【題目】已知橢圓E),它的上,下頂點(diǎn)分別為A,B,左,右焦點(diǎn)分別為,,若四邊形為正方形,且面積為2.

(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)存在斜率不為零且平行的兩條直線(xiàn),,它們與橢圓E分別交于點(diǎn)CD,M,N,且四邊形是菱形,求出該菱形周長(zhǎng)的最大值.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)由題意可得,解出即可;

(Ⅱ)設(shè)的方程為,的方程為,聯(lián)立直線(xiàn)與橢圓方程并消元得韋達(dá)定理的結(jié)論,根據(jù)弦長(zhǎng)公式可求得,由四邊形為菱形可得,可得,再根據(jù)基本不等式即可求出最值.

解:(Ⅰ)∵四邊形為正方形,且面積為2,

,

解得

∴橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)的方程為,

設(shè)的方程為,,

聯(lián)立可得,

可得,化簡(jiǎn)可得,①

,

,

同理可得,

∵四邊形為菱形,∴,∴

又∵,∴,

關(guān)于原點(diǎn)對(duì)稱(chēng),又橢圓關(guān)于原點(diǎn)對(duì)稱(chēng),

關(guān)于原點(diǎn)對(duì)稱(chēng),也關(guān)于原點(diǎn)對(duì)稱(chēng),

,,

∵四邊形為菱形,可得,

,即

,

可得,

化簡(jiǎn)可得,

∴菱形的周長(zhǎng)為

當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,

此時(shí),滿(mǎn)足①,

∴菱形的周長(zhǎng)的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知過(guò)點(diǎn)且斜率為1的直線(xiàn)與曲線(xiàn)是參數(shù))交于兩點(diǎn),與直線(xiàn)交于點(diǎn).

1)求曲線(xiàn)的普通方程與直線(xiàn)的直角坐標(biāo)方程;

2)若的中點(diǎn)為,比較的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱ABCA1B1C1中,∠ACB90°,∠ABC45°,ABAA12PCC1的中點(diǎn).

1)證明:AB1⊥平面PA1B;

2)設(shè)EBC的中點(diǎn),線(xiàn)段AB1上是否存在一點(diǎn)Q,使得QE∥平面A1ACC1?若存在,求四棱錐QAA1C1C的體積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,離心率為,過(guò)作直線(xiàn)與橢圓交于,兩點(diǎn),的周長(zhǎng)為8

1)求橢圓的標(biāo)準(zhǔn)方程;

2)問(wèn):的內(nèi)切圓面積是否有最大值?若有,試求出最大值;若沒(méi)有,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)若,求處的切線(xiàn)與兩坐標(biāo)軸圍成的三角形的面積;

2)若上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是拋物線(xiàn)上三個(gè)不同的點(diǎn),且.

(Ⅰ)若,求點(diǎn)的坐標(biāo);

(Ⅱ)若拋物線(xiàn)上存在點(diǎn),使得線(xiàn)段總被直線(xiàn)平分,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】足球運(yùn)動(dòng)是一項(xiàng)古老的體育活動(dòng),眾多的資料表明,中國(guó)古代足球的出現(xiàn)比歐洲早,歷史更為悠久,如圖,現(xiàn)代比賽用足球是由正五邊形與正六邊形構(gòu)成的共32個(gè)面的多面體,著名數(shù)學(xué)家歐拉證明了凸多面體的面數(shù)(F),頂點(diǎn)數(shù)(V),棱數(shù)(E)滿(mǎn)足F+V-E=2,那么,足球有______.個(gè)正六邊形的面,若正六邊形的邊長(zhǎng)為,則足球的直徑為______.cm(結(jié)果保留整數(shù))(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,的對(duì)邊分別為,且成等差數(shù)列.

1)求的值;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)過(guò)點(diǎn),拋物線(xiàn)處的切線(xiàn)交軸于點(diǎn),過(guò)點(diǎn)作直線(xiàn)與拋物線(xiàn)交于不同的兩點(diǎn)、,直線(xiàn)、、分別與拋物線(xiàn)的準(zhǔn)線(xiàn)交于點(diǎn)、,其中為坐標(biāo)原點(diǎn).

)求拋物線(xiàn)的方程及其準(zhǔn)線(xiàn)方程,并求出點(diǎn)的坐標(biāo);

)求證:為線(xiàn)段的中點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案