【題目】已知橢圓C:()的兩焦點與短軸兩端點圍成面積為12的正方形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)我們稱圓心在橢圓上運動,半徑為的圓是橢圓的“衛(wèi)星圓”.過原點O作橢圓C的“衛(wèi)星圓”的兩條切線,分別交橢圓C于A、B兩點,若直線、的斜率為、,當(dāng)時,求此時“衛(wèi)星圓”的個數(shù).
【答案】(1);(2)8個.
【解析】
(1)由條件可得,解出來即可;
(2) 設(shè)“衛(wèi)星圓”的圓心為,由定義可得“衛(wèi)星圓”的標(biāo)準(zhǔn)方程為,求其圓心到直線,直線的距離,整理可轉(zhuǎn)化為、是方程的兩個不相等的實數(shù)根,則,再加上,,解方程即可.
(1)∵橢圓C的兩焦點與短軸兩端點圍成面積為12的正方形,
∴由橢圓的定義和正方形的性質(zhì),可得,
解得.
又
∴橢圓C的標(biāo)準(zhǔn)方程為.
(2)設(shè)“衛(wèi)星圓”的圓心為.
由“衛(wèi)星圓”的定義,可得“衛(wèi)星圓”的半徑為.
∴“衛(wèi)星圓”的標(biāo)準(zhǔn)方程為.
∵直線:與“衛(wèi)星圓”相切,
則由點到直線的距離公式可,
化簡得.
同理可得.
∴、是方程的兩個不相等的實數(shù)根,
∴,由,得,
將代入得,.
又∵“衛(wèi)星圓”的圓心在橢圓C上,
∴代入橢圓方程中,可得.
解得,
.
當(dāng)時,;
當(dāng)時,,
∴滿足條件的點共8個,
∴這樣“衛(wèi)星圓”存在8個.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】移動支付(支付寶及微信支付)已經(jīng)漸漸成為人們購物消費的一種支付方式,為調(diào)查市民使用移動支付的年齡結(jié)構(gòu),隨機對100位市民做問卷調(diào)查得到列聯(lián)表如下:
(1)將上列聯(lián)表補充完整,并請說明在犯錯誤的概率不超過0.10的前提下,認(rèn)為支付方式與年齡是否有關(guān)?
(2)在使用移動支付的人群中采用分層抽樣的方式抽取10人做進一步的問卷調(diào)查,從這10人隨機中選出3人頒發(fā)參與獎勵,設(shè)年齡都低于35歲(含35歲)的人數(shù)為,求的分布列及期望.
(參考公式:(其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù)).
(Ⅰ)討論極值點的個數(shù);
(Ⅱ)若是的一個極值點,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,短軸長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若橢圓的左焦點為,過點的直線與橢圓交于兩點,則在軸上是否存在一個定點使得直線的斜率互為相反數(shù)?若存在,求出定點的坐標(biāo);若不存在,也請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲同學(xué)參加化學(xué)競賽初賽,考試分為筆試、口試、實驗三個項目,各單項通過考試的概率依次為、、,筆試、口試、實驗通過考試分別記4分、2分、4分,沒通過的項目記0分,各項成績互不影響.
(Ⅰ)若規(guī)定總分不低于8分即可進入復(fù)賽,求甲同學(xué)進入復(fù)賽的概率;
(Ⅱ)記三個項目中通過考試的個數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上一點與橢圓右焦點的連線垂直于軸,過橢圓上一點的直線與橢圓交于兩點(均不在坐標(biāo)軸上),設(shè)為坐標(biāo)原點,過的射線與橢圓交于點.
(1)若,求實數(shù)的值;
(2)當(dāng)為時,若四邊形的面積為12,試求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面ABCD,是正三角形,AC與BD的交點為M,又,,點N是CD中點.
(1)求證:平面PAD;
(2)求點M到平面PBC的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com