已知二次函數(shù),滿足,且方程有兩個相等的實根.
(1)求函數(shù)的解析式;
(2)當時,求函數(shù)的最小值的表達式.
(1);(2)
解析試題分析:(1)應用結論:函數(shù)滿足,則直線是函數(shù)圖象的對稱軸,一般地函數(shù)滿足,則直線是函數(shù)圖象的對稱軸.(2)二次函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,我們在求二次函數(shù)在區(qū)間上的最值時,要特別注意與的關系,也即要討論在區(qū)間上單調(diào)性,則單調(diào)性得出最值.
試題解析:解:(1)由,得:對稱軸,
由方程有兩個相等的實根可得:,
解得.
∴. 5分
(2).
①當,即時,; 6分
②當,即時,; 8分[
③當時,; 10分
綜上:. 12分
考點:1、函數(shù)圖象的對稱性;2、二次函數(shù)在給定區(qū)間的最值.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)是奇函數(shù),并且函數(shù)的圖像經(jīng)過點(1,3),(1)求實數(shù)的值;(2)求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點直線AM,BM相交于點M,且.
(1)求點M的軌跡的方程;
(2)過定點(0,1)作直線PQ與曲線C交于P,Q兩點,且,求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).(I)求函數(shù)的單調(diào)遞增區(qū)間;
(II) 若關于的方程在區(qū)間內(nèi)恰有兩個不同的實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),是否存在實數(shù)a、b、c,使同時滿足下列三個條件:(1)定義域為R的奇函數(shù);(2)在上是增函數(shù);(3)最大值是1.若存在,求出a、b、c;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,的定義域為
(1)求的值;
(2)若函數(shù)在區(qū)間上是單調(diào)遞減函數(shù),求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中e為自然對數(shù)的底數(shù),且當x>0時恒成立.
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)求實數(shù)a的所有可能取值的集合;
(Ⅲ)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com