已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù),且當(dāng)x>0時(shí)恒成立.
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)求實(shí)數(shù)a的所有可能取值的集合;
(Ⅲ)求證:.
(Ⅰ) 減區(qū)間是,增區(qū)間是;(Ⅱ);(Ⅲ)詳見解析.
解析試題分析:(Ⅰ)確定定義域,求,由 求得增區(qū)間,由 求得減區(qū)間;(Ⅱ)利用在區(qū)間上,恒成立,則求解;(Ⅲ)利用構(gòu)造法,構(gòu)造新函數(shù)求解.
試題解析:(Ⅰ),,,
的減區(qū)間是,增區(qū)間是. (2分)
(Ⅱ)恒成立,即,
,恒成立. (3分)
設(shè),,
由于在上是增函數(shù),且,
時(shí),是減函數(shù),時(shí),是增函數(shù),
,從而若恒成立,必有. (5分)
又,的取值集合為. (6分)
(Ⅲ)由(Ⅰ)知,,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,
時(shí),有.
, (9分)
設(shè),
則,
當(dāng)時(shí),是減函數(shù),
當(dāng)時(shí),是增函數(shù),
,即成立. (12分)
考點(diǎn):導(dǎo)數(shù)法判斷函數(shù)的單調(diào)性,恒成立,構(gòu)造法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù),滿足,且方程有兩個(gè)相等的實(shí)根.
(1)求函數(shù)的解析式;
(2)當(dāng)時(shí),求函數(shù)的最小值的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)二次函數(shù)在區(qū)間上的最大值、最小值分別是,集合.
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,記,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若定義在上的函數(shù)同時(shí)滿足:①;②;③若,且,則成立.則稱函數(shù)為“夢(mèng)函數(shù)”.
(1)試驗(yàn)證在區(qū)間上是否為“夢(mèng)函數(shù)”;
(2)若函數(shù)為“夢(mèng)函數(shù)”,求的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)
(1)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)時(shí),求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5b/f/uegsy3.png" style="vertical-align:middle;" />的函數(shù),其導(dǎo)函數(shù)為.若對(duì),均有,則稱函數(shù)為上的夢(mèng)想函數(shù).
(Ⅰ)已知函數(shù),試判斷是否為其定義域上的夢(mèng)想函數(shù),并說明理由;
(Ⅱ)已知函數(shù)(,)為其定義域上的夢(mèng)想函數(shù),求的取值范圍;
(Ⅲ)已知函數(shù)(,)為其定義域上的夢(mèng)想函數(shù),求的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(是不為零的實(shí)數(shù),為自然對(duì)數(shù)的底數(shù)).
(1)若曲線與有公共點(diǎn),且在它們的某一公共點(diǎn)處有共同的切線,求k的值;
(2)若函數(shù)在區(qū)間內(nèi)單調(diào)遞減,求此時(shí)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)定義在上的函數(shù),滿足當(dāng)時(shí), ,且對(duì)任意,有,
(1)解不等式
(2)解方程
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com