【題目】為調(diào)查高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間之間的相關(guān)關(guān)系,長郡中學(xué)數(shù)學(xué)教師對新入學(xué)的45名學(xué)生進行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時間不少于15小時的有19人,余下的人中,在高三模擬考試中數(shù)學(xué)平均成績不足120分的占,統(tǒng)計成績后,得到如下的列聯(lián)表:

分?jǐn)?shù)大于等于120分

分?jǐn)?shù)不足120分

合計

周做題時間不少于15小時

4

19

周做題時間不足15小時

合計

45

(1)請完成上面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為“高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間有關(guān)”;

(2)(ⅰ)按照分層抽樣的方法,在上述樣本中,從分?jǐn)?shù)大于等于120分和分?jǐn)?shù)不足120分兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到的不足120分且周做題時間不足15小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);

(ⅱ)若將頻率視為概率,從全校大于等于120分的學(xué)生中隨機抽取20人,求這些人中周做題時間不少于15小時的人數(shù)的期望和方差.

附:

【答案】(1)見解析;(2)(。┮娊馕;(ⅱ), .

【解析】試題分析】(1)先算出卡方系數(shù),再與參數(shù)值進行比對,從而做出判斷;(2)先運用分層抽樣的方法求出隨機變量的概率分布,再借助概率分布的數(shù)學(xué)期望公式進行求解:

(1)

分?jǐn)?shù)大于等于120分

分?jǐn)?shù)不足120分

合計

周做題時間不少于15小時

15

周做題時間不足15小時

10

16

26

合計

25

20

∴能在犯錯誤的概率不超過0.01的前提下認(rèn)為“高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間有關(guān)”

(2)(。┯煞謱映闃又笥诘扔120分的有5人,不足120分的有4人

的可能取值為.

, ,

, .

(ⅱ)設(shè)從全校大于等于120分的學(xué)生中隨機抽取20人,這些人中周做題時間不少于15小時的人數(shù)為隨機變量,由題意可知

, .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,點D是BC的中點.

(1)求證:A1B∥平面ADC1;
(2)若AB⊥AC,AB=AC=1,AA1=2,求平面ADC1與ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)隨機選取了名男生,將他們的身高作為樣本進行統(tǒng)計,得到如圖所示的頻率分布直方圖.觀察圖中數(shù)據(jù),完成下列問題.

(Ⅰ)求的值及樣本中男生身高在(單位: )的人數(shù);

假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,通過樣本估計該校全體男生的平均身高;

(Ⅲ)在樣本中,從身高在(單位: )內(nèi)的男生中任選兩人,求這兩人的身高都不低于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,EAB的中點.

(Ⅰ)求證:AN∥平面MEC;

(Ⅱ)在線段AM上是否存在點P,使二面角P﹣EC﹣D的大小為 ?若存在,求出AP的長h;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1⊥底面ABC,CA=CB,D,E,F(xiàn)分別為AB,A1D,A1C的中點,點G在AA1上,且A1D⊥EG.

(1)求證:CD∥平面EFG;
(2)求證:A1D⊥平面EFG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是公比為正整數(shù)的等比數(shù)列,{bn}是等差數(shù)列,且a1a2a3=64,b1+b2+b3=﹣42,6a1+b1=2a3+b3=0.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)pn= ,數(shù)列{pn}的前n項和為Sn
①試求最小的正整數(shù)n0 , 使得當(dāng)n≥n0時,都有S2n>0成立;
②是否存在正整數(shù)m,n(m<n),使得Sm=Sn成立?若存在,請求出所有滿足條件的m,n;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某媒體為了解某地區(qū)大學(xué)生晚上放學(xué)后使用手機上網(wǎng)情況,隨機抽取了100名大學(xué)生進行調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制的學(xué)生每晚使用手機上網(wǎng)平均所用時間的頻率分布直方圖.將時間不低于40分鐘的學(xué)生稱為“手機迷”.

(1)樣本中“手機迷”有多少人?
(2)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷是否有95%的把握認(rèn)為“手機迷”與性別有關(guān)?
(3)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量大學(xué) 生中,采用隨機抽樣方法每次抽取1名大學(xué)生,抽取3次,經(jīng)調(diào)查一名“手機迷”比“非手機迷”每月的話費平均多40元,記被抽取的3名大學(xué)生中的“手機迷”人數(shù)為X,且設(shè)3人每月的總話費比“非手機迷”共多出Y元,若每次抽取的結(jié)果是相互獨立的,求X的分布列和Y的期望EY

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項和為Sn , a2=4,S5=30
(1)求數(shù)列{an}的通項公式an
(2)設(shè)數(shù)列{ }的前n項和為Tn , 求證: ≤Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn滿足2Sn=3an﹣3,數(shù)列{bn}的前n項和Tn滿足 = +1且b1=1.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前n項和Pn
(3)數(shù)列{Sn}中是否存在不同的三項Sp , Sq , Sr , 使這三項恰好構(gòu)成等差數(shù)列?若存在,求出p,q,r的關(guān)系;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案