【題目】已知f(x)=logmx(m為常數(shù),m>0且m≠1),設(shè)f(a1),f(a2),…,f(an)(n∈N+)是首項(xiàng)為4,公差為2的等差數(shù)列.
(Ⅰ)求證:數(shù)列l(wèi)ogman=2n+2,{an}是等比數(shù)列;
(Ⅱ)若bn=anf(an),記數(shù)列{bn}的前n項(xiàng)和為Sn , 當(dāng)m= 時(shí),求Sn

【答案】證明:(Ⅰ)由題意f(an)=4+2(n﹣1)=2n+2,即logman=2n+2,

∴{an}是以m4為首項(xiàng),m2為公比的等比數(shù)列
解:(Ⅱ)當(dāng)m= 時(shí),
bn=anf(an)=(2n+2)2n+1 ,
Sn=422+623+824+…+(2n+2)2n+1 , …①
2Sn=423+624+…+(2n)2n+1+(2n+2)2n+2 , …②
②﹣①并整理,得Sn=2n+3n
【解析】(Ⅰ)由題意得:logman=2n+2,即 ,可得{an}是等比數(shù)列;(Ⅱ)若bn=anf(an)=(2n+2)2n+1 , 利用錯(cuò)位相減法,可得Sn
【考點(diǎn)精析】通過(guò)靈活運(yùn)用數(shù)列的前n項(xiàng)和,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(0,﹣2),橢圓E: 的離心率為 ,F(xiàn)是橢圓E的右焦點(diǎn),直線AF的斜率為 ,O為坐標(biāo)原點(diǎn).
(1)求橢圓E的方程;
(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線與橢圓E相交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用A,B兩種原料,已知每種產(chǎn)品各生產(chǎn)1噸所需原料及每天原料的可用限額如下表所示,如果生產(chǎn)1噸甲產(chǎn)品可獲利潤(rùn)3萬(wàn)元,生產(chǎn)1噸乙產(chǎn)品可獲利4萬(wàn)元,則該企業(yè)每天可獲得最大利潤(rùn)為萬(wàn)元.

原料限額

A(噸)

3

2

12

B(噸)

1

2

8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,a,b,c分別是角A,B,C所對(duì)的邊,已知向量 =(cosA,sinA), =(cosB,﹣sinB),且| |=1.
(1)求角C的度數(shù);
(2)若c=3,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知偶函數(shù)f(x)在[﹣1,0]上為單調(diào)增函數(shù),則(
A.f(sin )<f(cos
B.f(sin1)>f(cos1)
C.f(sin )<f(sin
D.f(sin )>f(tan

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)f(x)是定義在(﹣3,3)上的奇函數(shù),當(dāng)0<x<3時(shí),函數(shù)f(x)的圖象如圖所示,那么不等式f(x)cosx<0的解集是(

A.(﹣3,﹣ )∪(0,1)∪( ,3)
B.(﹣ ,﹣1)∪(0,1)∪( ,3)
C.(﹣3,﹣1)∪(0,1)∪(1,3)
D.(﹣3,﹣ )∪(0,1)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (x∈R)時(shí),則下列所有正確命題的序號(hào)是
①若任意x∈R,則等式f(﹣x)+f(x)=0恒成立;
②存在m∈(0,1),使得方程|f(x)|=m有兩個(gè)不等實(shí)數(shù)根;
③任意x1 , x2∈R,若x1≠x2 , 則一定有f(x1)≠f(x2
④存在k∈(1,+∞),使得函數(shù)g(x)=f(x)﹣kx在R上有三個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列四組函數(shù)中,f(x)與g(x)表示同一函數(shù)的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),且離心率等于

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(diǎn),與圓交于兩點(diǎn).若,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案