【題目】已知橢圓經(jīng)過點(diǎn),且離心率等于.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn),與圓交于兩點(diǎn).若,試求的取值范圍.
【答案】(1) ;(2) .
【解析】試題分析:(1)由題意得關(guān)于a,b,c方程組,解方程組可得橢圓的方程;(2)根據(jù)垂徑定理可求直線被圓解得弦長(zhǎng)CD,根據(jù)韋達(dá)定理以及弦長(zhǎng)公式可求AB,即得關(guān)于m的函數(shù)關(guān)系式,結(jié)合直線與圓相交條件得m取值范圍,根據(jù)m范圍求的取值范圍.
試題解析:(1)由題意可得e==,
a2﹣b2=c2,
將M的坐標(biāo)代入橢圓方程,可得
+=1,
解得a=2,b=c=2,
即有橢圓的方程為+=1;
(2)①O到直線y=x+m的距離為d=,
由弦長(zhǎng)公式可得2=2,
解得m=±,
可得直線的方程為y=x±;
②由y=x+m代入橢圓方程x2+2y2=8,
可得3x2+4mx+2m2﹣8=0,
由判別式為△=16m2﹣12(2m2﹣8)>0,
化簡(jiǎn)可得m2<12,
由直線和圓相交的條件可得d<r,
即有<,即為m2<4,
綜上可得m的范圍是(﹣2,2).
設(shè)A(x1,y1),B(x2,y2),
可得x1+x2=﹣,x1x2=,
即有弦長(zhǎng)|AB|=
==,
|CD|=2=,
即有λ===,
由0<4﹣m2≤4,可得≥2,
即有λ≥.
則λ的取值范圍是[,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=logmx(m為常數(shù),m>0且m≠1),設(shè)f(a1),f(a2),…,f(an)(n∈N+)是首項(xiàng)為4,公差為2的等差數(shù)列.
(Ⅰ)求證:數(shù)列l(wèi)ogman=2n+2,{an}是等比數(shù)列;
(Ⅱ)若bn=anf(an),記數(shù)列{bn}的前n項(xiàng)和為Sn , 當(dāng)m= 時(shí),求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AB= ,BC=1,E為線段DC上一動(dòng)點(diǎn),現(xiàn)將△AED沿AE折起,使點(diǎn)D在面ABC上的射影K在直線AE上,當(dāng)E從D運(yùn)動(dòng)到C,則K所形成軌跡的長(zhǎng)度為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不交于同一點(diǎn)的三條直線l1:4x+y﹣4=0,l2:mx+y=0,l3:x﹣my﹣4=0
(1)當(dāng)這三條直線不能圍成三角形時(shí),求實(shí)數(shù)m的值.
(2)當(dāng)l3與l1 , l2都垂直時(shí),求兩垂足間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的焦點(diǎn)在x軸上,離心率等于 ,且過點(diǎn)(1, ). (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓C的右焦點(diǎn)F作直線l交橢圓C于A,B兩點(diǎn),交y軸于M點(diǎn),若 =λ1 , =λ2 ,求證:λ1+λ2為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)和y=g(x)在[﹣2,2]上的圖象如圖所示.給出下列四個(gè)命題:
①方程f[g(x)]=0有且僅有6個(gè)根;
②方程g[f(x)]=0有且僅有3個(gè)根;
③方程f[f(x)]=0有且僅有5個(gè)根;
④方程g[g(x)]=0有且僅有4個(gè)根.
其中正確的命題的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+2x﹣2﹣a(a≤0),
(1)若a=﹣1,求函數(shù)的零點(diǎn);
(2)若函數(shù)在區(qū)間(0,1]上恰有一個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點(diǎn).
(1)求證:CE∥平面PAD;
(2)若二面角P﹣AC﹣E的余弦值為 ,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)閇3,6],則函數(shù)y= 的定義域?yàn)椋?/span> )
A.[ ,+∞)
B.[ ,2)
C.( ,+∞)
D.[ ,2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com