【題目】在四棱錐P﹣ABCD中, =(4,﹣2,3), =(﹣4,1,0), (﹣6,2,﹣8),則該四棱錐的高為 .
【答案】2
【解析】解:四棱錐P﹣ABCD中, =(4,﹣2,3), =(﹣4,1,0), (﹣6,2,﹣8),
設(shè)平面ABCD的法向量為 =(x,y,z),
則 ,
可得 ,
不妨令x=3,則y=12,z=4,
可得 =(3,12,4);
則 =(﹣6,2,﹣8)在平面ABCD上的射影就是這個四棱錐的高h(yuǎn),
所以h=| ||cos< , >|=| |= =2;
所以該四棱錐的高為2.
所以答案是:2.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解棱錐的結(jié)構(gòu)特征的相關(guān)知識,掌握側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)既有一個極小值又有一個極大值,求的取值范圍;
(3)若存在,使得當(dāng)時, 的值域是,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某老師對全班名學(xué)生學(xué)習(xí)積極性和參加社團(tuán)活動情況進(jìn)行調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下所示:
參加社團(tuán)活動 | 不參加社團(tuán)活動 | 合計(jì) | |
學(xué)習(xí)積極性高 | |||
學(xué)習(xí)積極性一般 | |||
合計(jì) |
(1)請把表格數(shù)據(jù)補(bǔ)充完整;
(2)若從不參加社團(tuán)活動的人按照分層抽樣的方法選取人,再從所選出的人中隨機(jī)選取兩人作為代表發(fā)言,求至少有一個學(xué)習(xí)積極性高的概率;
(3)運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:請你判斷是否有的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參與社團(tuán)活動由關(guān)系?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:函數(shù)f(x)= (a>0,且a≠1)在R上為單調(diào)遞減函數(shù),命題q:x∈[0, ],x2﹣a≤0恒成立.
(1)求命題q真時a的取值范圍;
(2)若命題p∧q為假,p∨q為真,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,橢圓: ()的離心率是,拋物線: 的焦點(diǎn)是的一個頂點(diǎn).
(1)求橢圓的方程;
(2)設(shè)是上動點(diǎn),且位于第一象限, 在點(diǎn)處的切線與交于不同的兩點(diǎn), ,線段的中點(diǎn)為,直線與過且垂直于軸的直線交于點(diǎn).
(i)求證:點(diǎn)在定直線上;
(ii)直線與軸交于點(diǎn),記的面積為, 的面積為,求的最大值及取得最大值時點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,四邊形是菱形, ,又平面,
點(diǎn)是棱的中點(diǎn), 在棱上,且.
(1)證明:平面平面;
(2)若平面,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若m=1,求函數(shù)f(x)的定義域.
(2)若函數(shù)f(x)的值域?yàn)镽,求實(shí)數(shù)m的取值范圍.
(3)若函數(shù)f(x)在區(qū)間 上是增函數(shù),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com