【題目】某老師對(duì)全班名學(xué)生學(xué)習(xí)積極性和參加社團(tuán)活動(dòng)情況進(jìn)行調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下所示:

參加社團(tuán)活動(dòng)

不參加社團(tuán)活動(dòng)

合計(jì)

學(xué)習(xí)積極性高

學(xué)習(xí)積極性一般

合計(jì)

(1)請(qǐng)把表格數(shù)據(jù)補(bǔ)充完整;

(2)若從不參加社團(tuán)活動(dòng)的人按照分層抽樣的方法選取人,再從所選出的人中隨機(jī)選取兩人作為代表發(fā)言,求至少有一個(gè)學(xué)習(xí)積極性高的概率;

(3)運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:請(qǐng)你判斷是否有的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參與社團(tuán)活動(dòng)由關(guān)系?

附:

【答案】(1)見解析;(2);(3)有的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參與社團(tuán)活動(dòng)由關(guān)系.

【解析】試題分析:1根據(jù)列聯(lián)表給出的數(shù)據(jù)可以補(bǔ)全其它數(shù)據(jù)2人選人,其中學(xué)習(xí)積極性高的人記為,學(xué)習(xí)積極性一般的人,記為,從人中任選兩人,共有以下個(gè)等可能性基本事件: ,

則至少有以為學(xué)習(xí)積極性高的事件有個(gè)根據(jù)古典概型的概率計(jì)算即得解.

(3)根據(jù)列聯(lián)表中所給的數(shù)據(jù),代入求這組數(shù)據(jù)的觀測(cè)值的公式,求出觀測(cè)值,把觀測(cè)值同臨界值進(jìn)行比較,得到有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參加社團(tuán)活動(dòng)情況有關(guān)系.

試題解析:

(1)

參加社團(tuán)活動(dòng)

不參加社團(tuán)活動(dòng)

合計(jì)

學(xué)習(xí)積極性高

學(xué)習(xí)積極性一般

合計(jì)

(2)人選人,其中學(xué)習(xí)積極性高的人記為,學(xué)習(xí)積極性一般的人,記為,從人中任選兩人,共有以下個(gè)等可能性基本事件: ,

則至少有以為學(xué)習(xí)積極性高的事件有個(gè),所以至少有一位學(xué)習(xí)積極性高的概率.

3所以大約有的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參與社團(tuán)活動(dòng)由關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長(zhǎng),求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將甲、乙兩顆骰子先后各拋一次,a、b分別表示拋擲甲、乙兩顆骰子所出現(xiàn)的點(diǎn)數(shù)﹒圖中三角形陰影部分的三個(gè)頂點(diǎn)為(0,0)、(4,0)和(0,4).

(1)若點(diǎn)P(a,b)落在如圖陰影所表示的平面區(qū)域(包括邊界)的事件記為A,求事件A的概率;
(2)若點(diǎn)P(a,b)落在直線x+y=m(m為常數(shù))上,且使此事件的概率P最大,求m和P的值﹒

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在正實(shí)數(shù)集上的函數(shù),其中,設(shè)兩曲線有公共點(diǎn),且在公共點(diǎn)處的切線相同.

(1)若,求實(shí)數(shù)的值;

(2)用表示,并求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,幾何體EF﹣ABCD中,CDEF為邊長(zhǎng)為2的正方形,ABCD為直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.

(1)求證:AC⊥FB
(2)求二面角E﹣FB﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中, =(4,﹣2,3), =(﹣4,1,0), (﹣6,2,﹣8),則該四棱錐的高為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD=CD=2AB=2,PA⊥AD,AB∥CD,CD⊥AD,E為PC的中點(diǎn),且DE=EC.

(1)求證:PA⊥面ABCD;
(2)設(shè)PA=a,若平面EBD與平面ABCD所成銳二面角θ∈( ),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+6.
(1)當(dāng)a=5時(shí),解不等式f(x)<0;
(2)若不等式f(x)>0的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)P是橢圓 上一點(diǎn),M、N分別是兩圓:(x+4)2+y2=1和(x﹣4)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值的分別為( )
A.9,12
B.8,11
C.8,12
D.10,12

查看答案和解析>>

同步練習(xí)冊(cè)答案