【題目】【選修4-4,坐標(biāo)系與參數(shù)方程】
在直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),在以O為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為
(Ⅰ)求直線的普通方程與曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線與軸的交點(diǎn)為P,直線與曲線C的交點(diǎn)為A,B,求的值.
【答案】(1)直線的普通方程為,曲線的直角坐標(biāo)方程為;(2).
【解析】試題本題主要考查參數(shù)方程、極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化、直線與圓的位置關(guān)系等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力. 第一問(wèn),利用,,轉(zhuǎn)化方程;第二問(wèn),將直線方程與曲線方程聯(lián)立,消參,得到關(guān)于的方程,利用兩根之積得到結(jié)論.
試題解析:(Ⅰ)直線的普通方程為,
,
曲線的直角坐標(biāo)方程為.
(Ⅱ)將直線的參數(shù)方程(為參數(shù))代入曲線:,得到:,
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是直角梯形,,,側(cè)面底面,是等邊三角形,,點(diǎn)分別是棱的中點(diǎn) .
(Ⅰ)求證:平面;
(Ⅱ)求二面角的大;
(Ⅲ)在線段上存在一點(diǎn),使平面,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程;
(2)若與有且僅有三個(gè)公共點(diǎn),求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在位于城市A南偏西相距100海里的B處,一股臺(tái)風(fēng)沿著正東方向襲來(lái),風(fēng)速為120海里/小時(shí),臺(tái)風(fēng)影響的半徑為海里
(1)若,求臺(tái)風(fēng)影響城市A持續(xù)的時(shí)間(精確到1分鐘)?
(2)若臺(tái)風(fēng)影響城市A持續(xù)的時(shí)間不超過(guò)1小時(shí),求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知定點(diǎn)、,動(dòng)點(diǎn)滿足,設(shè)點(diǎn)的曲線為,直線與交于兩點(diǎn).
(1)寫出曲線的方程,并指出曲線的軌跡;
(2)當(dāng),求實(shí)數(shù)的取值范圍;
(3)證明:存在直線,滿足,并求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,(其中常數(shù)).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)有兩個(gè)零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過(guò)點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)圓與相外切,與相內(nèi)切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)是動(dòng)圓的半徑最小時(shí)的圓,傾斜角為且過(guò)點(diǎn)的直線l與相切,與軌跡交于,兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com