【題目】在位于城市A南偏西相距100海里的B處,一股臺風(fēng)沿著正東方向襲來,風(fēng)速為120海里/小時,臺風(fēng)影響的半徑為海里

1)若,求臺風(fēng)影響城市A持續(xù)的時間(精確到1分鐘)?

2)若臺風(fēng)影響城市A持續(xù)的時間不超過1小時,求的取值范圍

【答案】(1)約49分鐘;(2

【解析】

1)求出臺風(fēng)從開始影響城市A到影響結(jié)束的距離,進而可得到臺風(fēng)持續(xù)時間

2)求出臺風(fēng)影響城市A的持續(xù)時間的表達式,使其小于等于1小時,解不等式即可.

如下圖,,臺風(fēng)在射線方向移動,在處開始影響城市,持續(xù)到處,,則,根據(jù)對稱性可知.

1,則,

則臺風(fēng)從開始影響城市A到影響結(jié)束的距離,

所以臺風(fēng)影響城市A持續(xù)的時間為小時,約49分鐘;

2)臺風(fēng)從開始影響到影響結(jié)束的距離,

則臺風(fēng)影響城市A持續(xù)的時間,解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)若曲線在點處的切線與直線平行,求滿足的關(guān)系;

(2)當(dāng)時,討論的單調(diào)性;

(3)當(dāng)時,對任意的,總有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】謝爾賓斯基三角形(Sierpinskitriangle)是一種分形幾何圖形,由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出,它是一個自相似的例子,其構(gòu)造方法是:

1)取一個實心的等邊三角形(圖1);

2)沿三邊中點的連線,將它分成四個小三角形;

3)挖去中間的那一個小三角形(圖2);

4)對其余三個小三角形重復(fù)(1)(2)(3)(4)(圖3.

制作出來的圖形如圖4,圖5,….

若圖3(陰影部分)的面積為1,則圖5(陰影部分)的面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓周率是一個在數(shù)學(xué)及物理學(xué)中普遍存在的數(shù)學(xué)常數(shù),它既常用又神秘,古今中外很多數(shù)學(xué)家曾研究它的計算方法.下面做一個游戲:讓大家各自隨意寫下兩個小于1的正數(shù)然后請他們各自檢查一下,所得的兩數(shù)與1是否能構(gòu)成一個銳角三角形的三邊,最后把結(jié)論告訴你,只需將每個人的結(jié)論記錄下來就能算出圓周率的近似值.假設(shè)有個人說“能”,而有個人說“不能”,那么應(yīng)用你學(xué)過的知識可算得圓周率的近似值為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(卷號)2040818101747712

(題號)2050752239689728

(題文)

在平面直角坐標系中,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知直線的參數(shù)方程為為參數(shù)),曲線C的極坐標方程為.

(1)求曲線的直角坐標方程和直線的普通方程;

(2)設(shè)直線與曲線交于兩點,點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在位于城市A南偏西相距100海里的B處,一股臺風(fēng)沿著正東方向襲來,風(fēng)速為120海里/小時,臺風(fēng)影響的半徑為海里

1)若,求臺風(fēng)影響城市A持續(xù)的時間(精確到1分鐘)?

2)若臺風(fēng)影響城市A持續(xù)的時間不超過1小時,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4,坐標系與參數(shù)方程】

在直角坐標系中,直線的參數(shù)方程為t為參數(shù)),在以O為極點,軸正半軸為極軸的極坐標系中,曲線C的極坐標方程為

)求直線的普通方程與曲線C的直角坐標方程;

)若直線軸的交點為P,直線與曲線C的交點為A,B,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)、、為平面內(nèi)的個點,在平面內(nèi)的所有點中,若點、、點的距離之和最小,則稱點、、、點的一個中位點,有下列命題:①、、三個點共線,在線段上,則、、的中位點;②直角三角形斜邊的中點是該直線三角形三個頂點的中位點;③若四個點、、、共線,則它們的中位點存在且唯一;④梯形對角線的交點是該梯形四個頂點的唯一中位點;其中的真命題是(

A.②④B.①②C.①④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若存在兩個極值點,證明:

查看答案和解析>>

同步練習(xí)冊答案