【題目】已知,(其中常數(shù)).

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)若函數(shù)有兩個(gè)零點(diǎn),求證:.

【答案】(1)有極小值,無(wú)極大值;(2)證明見(jiàn)解析.

【解析】

1)求出ae的函數(shù)的導(dǎo)數(shù),求出單調(diào)區(qū)間,即可求得極值;(2)先證明:當(dāng)fx)≥0恒成立時(shí),有 0ae成立.若,則fx)=exalnx+1)≥0顯然成立;若,運(yùn)用參數(shù)分離,構(gòu)造函數(shù)通過(guò)求導(dǎo)數(shù),運(yùn)用單調(diào)性,結(jié)合函數(shù)零點(diǎn)存在定理,即可得證.

函數(shù)的定義域?yàn)?/span>

(1)當(dāng)時(shí),,單調(diào)遞增且

當(dāng)時(shí),,所以上單調(diào)遞減;

當(dāng)時(shí),,則上單調(diào)遞增,

所以有極小值,無(wú)極大值.

(2)先證明:當(dāng)恒成立時(shí),有成立

,則顯然成立;

,由,令,則,

,由上單調(diào)遞增,

又∵,所以上為負(fù),遞減,在上為正,遞增,∴ ,從而.

因而函數(shù)若有兩個(gè)零點(diǎn),則,所以,

,則,

上單調(diào)遞增,∴,

上單調(diào)遞增∴,則

,由,

,∴,綜上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù)),把曲線橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)縮短為原來(lái)的一半,得到曲線,直線的普通方程是,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系;

(1)求直線的極坐標(biāo)方程和曲線的普通方程;

(2)記射線交于點(diǎn),與交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求不等式的解集;

(2)若直線的圖象所圍成的多邊形面積為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年?yáng)|京夏季奧運(yùn)會(huì)將設(shè)置米男女混合泳接力這一新的比賽項(xiàng)目,比賽的規(guī)則是:每個(gè)參賽國(guó)家派出2男2女共計(jì)4名運(yùn)動(dòng)員參加比賽,按照仰泳蛙泳蝶泳自由泳的接力順序,每種泳姿100米且由1名運(yùn)動(dòng)員完成,且每名運(yùn)動(dòng)員都要出場(chǎng),若中國(guó)隊(duì)確定了備戰(zhàn)該項(xiàng)目的4名運(yùn)動(dòng)員名單,其中女運(yùn)動(dòng)員甲只能承擔(dān)仰泳或者自由泳,男運(yùn)動(dòng)員乙只能承擔(dān)蝶泳或者自由泳,剩下的2名運(yùn)動(dòng)員四種泳姿都可以承擔(dān),則中國(guó)隊(duì)的排兵布陣的方式共有( )

A. 144種B. 24種C. 12種D. 6種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐中,菱形所在的平面,中點(diǎn),上的點(diǎn).

1)求證:平面平面;

2)若的中點(diǎn),當(dāng)時(shí),是否存在點(diǎn),使直線與平面的所成角的正弦值為?若存在,請(qǐng)求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的特征三角形.如果兩個(gè)橢圓的特征三角形是相似的,則稱這兩個(gè)橢圓是相似橢圓,并將三角形的相似比稱為橢圓的相似比.已知橢圓

1)若橢圓,判斷是否相似?如果相似,求出的相似比;如果不相似,請(qǐng)說(shuō)明理由;

2)寫(xiě)出與橢圓相似且短半軸長(zhǎng)為的橢圓的方程;若在橢圓上存在兩點(diǎn)、關(guān)于直線對(duì)稱,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示為一正方體的平面展開(kāi)圖,在這個(gè)正方體中,有下列四個(gè)命題:

AFGC

BDGC成異面直線且?jiàn)A角為60;

BDMN;

BG與平面ABCD所成的角為45.

其中正確的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于的方程組的系數(shù)矩陣記為,且該方程組存在非零解,若存在三階矩陣,使得,(0表示零矩陣,即所有元素均為0的矩陣;矩陣對(duì)應(yīng)的行列式為),則

1一定為1;

2一定為0;

3)該方程組一定有無(wú)窮多解.

其中正確說(shuō)法的個(gè)數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P-ABC中,平面平面ABC,.

1)若,求證:平面平面PBC;

2)若PA與平面ABC所成的角為,求二面角C-PB-A的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案