【題目】某超市計(jì)劃銷售某種食品,現(xiàn)邀甲、乙兩個(gè)商家進(jìn)場(chǎng)試銷5天.兩個(gè)商家提供的返利方案如下:甲商家每天固定返利60元,且每賣出一件食品商家再返利2元;乙商家無固定返利,賣出30件以內(nèi)(含30件)的食品,每件食品商家返利4元,超出30件的部分每件返利6元.經(jīng)統(tǒng)計(jì),兩個(gè)商家的試銷情況莖葉圖如下:
甲 | 乙 | |||||||
9 | 8 | 9 | 2 | 8 | 8 | |||
2 | 2 | 3 | 2 | 1 | 1 |
(1)現(xiàn)從甲商家試銷的5天中抽取兩天,求這兩天的銷售量都小于30的概率;
(2)超市擬在甲、乙兩個(gè)商家中選擇一家長(zhǎng)期銷售,如果僅從日平均返利額的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為超市作出選擇,并說明理由.
【答案】(1) ;(2)見解析.
【解析】試題分析:(1)先根據(jù)枚舉法確定5天中抽取兩天的基本事件總數(shù),再從中確定兩天的銷售量都小于30的基本事件數(shù),最后根據(jù)古典概型概率公式求概率,(2)先根據(jù)平均數(shù)計(jì)算公式求甲、乙,再根據(jù)大小確定選擇.
試題解析:(1)記“抽取的兩天銷售量都小于30”為事件A,
則5天中抽取兩天的情況有:(29,28),(29,29),(29,32),(29,32),(28,29),(28,32),(28,32),(29,32),(29,32),(32,32)共10種;
兩天的銷售量都小于30的情況有:(29,28),(29,29),(28,29)共3種.
所以P(A)= .
(2)依題意,
甲商家的日平均銷售量為:
.
所以甲商家的日平均返利額為:60+30×2=120元.
乙商家的日平均返利額為:
(28×4+28×4+30×4+2×6+30×4+1×6+30×4+1×6)=121.6元.
因?yàn)?21.6元>120元,
所以推薦該超市選擇乙商家長(zhǎng)期銷售.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1,平行四邊形中, , ,現(xiàn)將沿折起,得到三棱錐(如圖2),且,點(diǎn)為側(cè)棱的中點(diǎn).
(1)求證: 平面;
(2)求三棱錐的體積;
(3)在的角平分線上是否存在點(diǎn),使得平面?若存在,求的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)不透明的箱子,每個(gè)箱子都裝有4個(gè)完全相同的小球,球上分別標(biāo)有數(shù)字1,2,3,4.
(1)甲從其中一個(gè)箱子中摸出一個(gè)球,乙從另一個(gè)箱子摸出一個(gè)球,誰摸出的球上標(biāo)的數(shù)字大誰就獲勝(若數(shù)字相同則為平局),求甲獲勝的概率;
(2)摸球方法與(1)同,若規(guī)定:兩人摸到的球上所標(biāo)數(shù)字相同甲獲勝,所標(biāo)數(shù)字不相同則乙獲勝,這樣規(guī)定公平嗎?請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(2,2,2),B(2,0,0),C(0,2,-2).
(1)寫出直線BC的一個(gè)方向向量;
(2)設(shè)平面α經(jīng)過點(diǎn)A,且BC是α的法向量,M(x,y,z)是平面α內(nèi)的任意一點(diǎn),試寫出x,y,z滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在給出的下列命題中,正確的是( )
A.設(shè)是同一平面上的四個(gè)點(diǎn),若,則點(diǎn)必共線
B.若向量是平面上的兩個(gè)向量,則平面上的任一向量都可以表示為,且表示方法是唯一的
C.已知平面向量滿足則為等腰三角形
D.已知平面向量滿足,且,則是等邊三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2,E,F分別是AD,PC的中點(diǎn).
(1)證明:PC⊥平面BEF;
(2)求平面BEF與平面BAP夾角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓系方程: (, ), 是橢圓的焦點(diǎn), 是橢圓上一點(diǎn),且.
(1)求的方程;
(2)為橢圓上任意一點(diǎn),過且與橢圓相切的直線與橢圓交于, 兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,求證: 的面積為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的各棱長(zhǎng)均相等, 底面,E,F分別為棱的中點(diǎn).
(1)過作平面α,使得直線BE//平面α,若平面α與直線交于點(diǎn)H,指出點(diǎn)H所在的位置,并說明理由;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com