已知拋物線的切線垂直于直線,則切線方程為         .
由題意設(shè)切線方程為,代入拋物線方程得:,所以,解得,即切線方程為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線的焦點(diǎn)作直線交拋物線于兩點(diǎn),若線段中點(diǎn)的橫坐標(biāo)為,則                           (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知?jiǎng)訄A過定點(diǎn),且與直線相切.
(1)求動(dòng)圓的圓心軌跡的方程;
(2) 是否存在直線,使過點(diǎn),并與軌跡交于兩點(diǎn),且滿足
?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,通徑長為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形,(1)求橢圓的方程;(2)過點(diǎn)Q(-1,0)的直線l交橢圓于A,B兩點(diǎn),交直線x=-4于點(diǎn)E,點(diǎn)Q分 所成比為λ,點(diǎn)E分所成比為μ,求證λ+μ為定值,并計(jì)算出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩定點(diǎn),動(dòng)點(diǎn)滿足
(1)  求動(dòng)點(diǎn)的軌跡方程;
(2)  設(shè)點(diǎn)的軌跡為曲線,試求出雙曲線的漸近線與曲線的交點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的一組斜率為2的平行弦中點(diǎn)的軌跡是(     )
A.橢圓B.圓C.雙曲線D.射線(不含端點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的方程為:
(1)若曲線是橢圓,求的取值范圍;
(2)若曲線是雙曲線,且有一條漸近線的傾斜角為,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)一束光線從點(diǎn)出發(fā),經(jīng)直線l:上一點(diǎn)反射后,恰好穿過點(diǎn).(1)求點(diǎn)的坐標(biāo);(2)求以、為焦點(diǎn)且過點(diǎn)的橢圓的方程; (3)設(shè)點(diǎn)是橢圓上除長軸兩端點(diǎn)外的任意一點(diǎn),試問在軸上是否存在兩定點(diǎn)、,使得直線的斜率之積為定值?若存在,請求出定值,并求出所有滿足條件的定點(diǎn)、的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以O(shè)為原點(diǎn),所在直線為軸,建立如 所示的坐標(biāo)系。設(shè),點(diǎn)F的坐標(biāo)為,,點(diǎn)G的坐標(biāo)為。
(1)求關(guān)于的函數(shù)的表達(dá)式,判斷函數(shù)的單調(diào)性,并證明你的判斷;
(2)設(shè)ΔOFG的面積,若以O(shè)為中心,F(xiàn)為焦點(diǎn)的橢圓經(jīng)過點(diǎn)G,求當(dāng)取最小值時(shí)橢圓的方程;
(3)在(2)的條件下,若點(diǎn)P的坐標(biāo)為,C、D是橢圓上的兩點(diǎn),且,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案