(本小題滿分12分)一束光線從點
出發(fā),經(jīng)直線
l:
上一點
反射后,恰好穿過點
.(1)求
點的坐標;(2)求以
、
為焦點且過點
的橢圓
的方程; (3)設(shè)點
是橢圓
上除長軸兩端點外的任意一點,試問在
軸上是否存在兩定點
、
,使得直線
、
的斜率之積為定值?若存在,請求出定值,并求出所有滿足條件的定點
、
的坐標;若不存在,請說明理由.
(1)設(shè)
關(guān)于
l的對稱點為
,則
且
,
解得
,
,即
,故直線
的方程為
.
由
,解得
. ------------------------3分
(2)因為
,根據(jù)橢圓定義,得
,所以
.又
,所以
.
所以橢圓
的方程為
. --------------------7分
(3)假設(shè)存在兩定點為
,使得對于橢圓上任意一點
(除長軸兩端點)都有
(
為定值),即
·
,將
代入并整理得
…(*).由題意,(*)式對任意
恒成立,所以
,解之得
或
.
所以有且只有兩定點
,使得
為定值
. ----------12分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)已知焦點在
軸上,離心率為
的橢圓的一個頂點是拋物線
的焦點,過橢圓右焦點
的直線
交橢圓于
兩點,交
軸于點
,且
,(1)求橢圓方程;(2)證明:
為定值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知拋物線
的切線垂直于直線
,則切線方程為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)過點M(1,1)作直線與拋物線
交于A、B兩點,該拋物線在A、B兩點處的兩條切線交于點P。 (I)求點P的軌跡方程; (II)求△ABP的面積的最小值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知動點
到定點
的距離與點
到定直線
:
的距離之比為
.
(1)求動點
的軌跡
的方程;
(2)設(shè)
、
是直線
上的兩個點,點
與點
關(guān)于原點
對稱,若
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓
的左、右焦點分別為
、
,其中
也是拋物線
的焦點,
是
與
在第一象限的交點,且
.(Ⅰ)求橢圓
的方程;(Ⅱ)已知菱形
的頂點
A﹑
C在橢圓
上,頂點
B﹑
C在直線
上,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題共12分)已知橢圓E:
的焦點坐
標為
(
),點M(
,
)在橢圓E上
(1)求橢圓E的方程;(2)O為坐標原點,⊙
的任意一條切線與橢圓E有兩個交點
,
且
,求⊙
的半徑。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)橢圓與雙曲線有共同的焦點F
(-4,0)、F
(4,0),并且橢圓和長軸長是雙曲線實軸長的2倍,試求橢圓與雙曲線交點的軌跡方程。
查看答案和解析>>