【題目】已知f(x)=|2x﹣1|﹣|2x+1|.
(1)求不等式f(x)>1的解集.
(2)當(dāng)時,求證:4x2+4x+2>(2x+1)f(x).
【答案】(1);(2)見解析
【解析】
(1) ,再根據(jù)分段函數(shù),即可求出不等式 的解集;
(2)要證明,只要證,根據(jù)絕對值三角不等式和基本不等式即可證明.
(1)f(x)=|2x﹣1|﹣|2x+1|,
當(dāng),f(x)=2>1恒成立,
當(dāng),f(x)=﹣4x>1,解得,
綜上所述不等式f(x)>1的解集為(﹣∞,).
證明(2)∵,
∴2x+1>0,
要證4x2+4x+2>(2x+1)f(x),
只要證f(x)(2x+1),
∵(2x+1)22,當(dāng)且僅當(dāng)x=0時取等號,
f(x)=|2x﹣1|﹣|2x+1|≤|(2x﹣1)﹣(2x+1)|=2,
∴f(x)恒成立,
∴4x2+4x+2>(2x+1)f(x).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如題所示的平面圖形中,為矩形,,為線段的中點,點是以為圓心,為直徑的半圓上任一點(不與重合),以為折痕,將半圓所在平面折起,使平面平面,如圖2,為線段的中點.
(1)證明:.
(2)若銳二面角的大小為,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC是以AC為斜邊的等腰直角三角形,△BCD是等邊三角形.如圖②,將△BCD沿BC折起,使平面BCD⊥平面ABC,記BC的中點為E,BD的中點為M,點F、N在棱AC上,且AF=3CF,C.
(1)試過直線MN作一平面,使它與平面DEF平行,并加以證明;
(2)記(1)中所作的平面為α,求平面α與平面BMN所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中曲線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程以及直線的直角坐標(biāo)方程;
(2)將曲線向左平移2個單位,再將曲線上的所有點的橫坐標(biāo)縮短為原來的,得到曲線,求曲線上的點到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),給出下列結(jié)論:
(1)若對任意,且,都有,則為R上的減函數(shù);
(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);
(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);
(4)t為常數(shù),若對任意的,都有則關(guān)于對稱。
其中所有正確的結(jié)論序號為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為的導(dǎo)函數(shù),為自然對數(shù)的底數(shù).
(1)求的值;
(2)求證:;
(3)若對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個湖的邊界是圓心為的圓,湖的一側(cè)有一條直線型公路,湖上有橋(是圓的直徑).規(guī)劃在公路上選兩個點,,并修建兩段直線型道路,,規(guī)劃要求:線段,上的所有點到點的距離均不小于圓的半徑.已知點,到直線的距離分別為和(,為垂足),測得,,(單位:百米).
(1)若道路與橋垂直,求道路的長;
(2)在規(guī)劃要求下,和中能否有一個點選在處?并說明理由;
(3)在規(guī)劃要求下,若道路和的長度均為(單位:百米),求當(dāng)最小時,、兩點間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com