【題目】如圖,在直四棱柱中,底面是平行四邊形, 點(diǎn),分別在棱,上,且,.
(1)求證:平面;
(2)若,,,求二面角的正弦值.
【答案】(1)見解析;(2)1.
【解析】
(1)連接,交于,取的中點(diǎn),連接,,先證明平行四邊形,所以,最后得出結(jié)論;
(2)根據(jù)題意,以為原點(diǎn),以,,分別為,,軸建立空間直角坐標(biāo)系,利用向量法求出平面的法向量,利用夾角公式求出即可.
解:(1)連接,交于,取的中點(diǎn),連接,,
由,,
故,以且,
故平行四邊形,所以,
根據(jù)中位線定理,,
由平面,平面,
所以平面,,
故平面;
(2),,
由,
由,得,
以為原點(diǎn),以,,分別為,,軸建立空間直角坐標(biāo)系,
,0,,,,,,,,,0,,
,,,,,,,0,,
設(shè)平面的一個(gè)法向量為,,,
由,令,得,0,,
設(shè)平面的一個(gè)法向量為,,,
由,令,得,
由,
所以二面角為,正弦值為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)是否存在實(shí)數(shù)a,使函數(shù)在區(qū)間上的最小值為,若存在,求出a的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某教師調(diào)查了名高三學(xué)生購買的數(shù)學(xué)課外輔導(dǎo)書的數(shù)量,將統(tǒng)計(jì)數(shù)據(jù)制成如下表格:
男生 | 女生 | 總計(jì) | |
購買數(shù)學(xué)課外輔導(dǎo)書超過本 | |||
購買數(shù)學(xué)課外輔導(dǎo)書不超過本 | |||
總計(jì) |
(Ⅰ)根據(jù)表格中的數(shù)據(jù),是否有的把握認(rèn)為購買數(shù)學(xué)課外輔導(dǎo)書的數(shù)量與性別相關(guān);
(Ⅱ)從購買數(shù)學(xué)課外輔導(dǎo)書不超過本的學(xué)生中,按照性別分層抽樣抽取人,再從這人中隨機(jī)抽取人詢問購買原因,求恰有名男生被抽到的概率.
附: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,
(Ⅰ)證明;AC⊥BP;
(Ⅱ)求直線AD與平面APC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AD∥BC,AB=BC=CD=1,AD=2,點(diǎn)E、F分別在線段AB、AD上,且EF∥CD,將△AEF沿EF折起到△MEF的位置,并使平面MEF⊥平面BCDFE,得到幾何體M﹣BCDEF,則折疊后的幾何體的體積的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=|2x﹣1|﹣|2x+1|.
(1)求不等式f(x)>1的解集.
(2)當(dāng)時(shí),求證:4x2+4x+2>(2x+1)f(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形中,,,是的中點(diǎn),為的中點(diǎn),以為折痕將向上折起,使點(diǎn)折到點(diǎn),且.
(1)求證: 面;
(2)求與面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行六面體ABCD﹣A1B1C1D1中,所有棱長(zhǎng)均為2,∠AA1D1=∠AA1B1=60°,∠D1A1B1=90°.
(1)求證:A1C⊥B1D1;
(2)求對(duì)角線AC1的長(zhǎng);
(3)求二面角C1﹣AB1﹣D1的平面角的余弦值的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com