【題目】如圖所示,在矩形中,,的中點(diǎn),的中點(diǎn),以為折痕將向上折起,使點(diǎn)折到點(diǎn),且.

1)求證: ;

2)求與面所成角的正弦值.

【答案】1)證明見(jiàn)解析;(2.

【解析】

1)利用線面垂直的判定定理,證得平面,進(jìn)而得到,進(jìn)而證得;

2)分別以、軸,建立如圖所示的空間直角坐標(biāo)系,求得平面的一個(gè)法向量為,利用向量的夾角公式,即可求解.

1)由題意,可得,,則,

的中點(diǎn),連,,可得,所以

因?yàn)?/span>,,且,所以平面,

又因?yàn)?/span>平面,所以.

又由為相交直線,所以平面.

2)作,可知,分別以軸,建立如圖所示的空間直角坐標(biāo)系,

,,,

可得,,,

設(shè)平面的法向量為

,令,可得平面的一個(gè)法向量為,

又由

所以與面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果,已知正方形的邊長(zhǎng)為2,平行軸,頂點(diǎn)分別在函數(shù),的圖像上,則實(shí)數(shù)的值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱中,底面是平行四邊形, 點(diǎn),分別在棱,上,且,.

1)求證:平面;

2)若,,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求曲線的普通方程以及直線的直角坐標(biāo)方程;

2)將曲線向左平移2個(gè)單位,再將曲線上的所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的,得到曲線,求曲線上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),給出下列結(jié)論:

(1)若對(duì)任意,且,都有,則為R上的減函數(shù);

(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);

(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);

(4)t為常數(shù),若對(duì)任意的,都有關(guān)于對(duì)稱。

其中所有正確的結(jié)論序號(hào)為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的最小值;

2)若存在,,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù),為自然對(duì)數(shù)的底數(shù).

1)求的值;

2)求證:;

3)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ。

)把C1的參數(shù)方程化為極坐標(biāo)方程;

)求C1C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若,證明恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案