【題目】是否存在互不相同的質(zhì)數(shù)p、q、r、s,使得它們的和為640,且都是完全平方數(shù)?若存在,求p、q、r、s的值;若不存在,說明理由.

【答案】見解析

【解析】

由p+q+r+s=640,且p、q、r、s是互不相同的質(zhì)數(shù),知p、q、r、s都是奇數(shù).

不妨再設s<r,則m<n.

由式①、②得

若m-p>1,則由m-p<n-p<n+p,得m+p=g=n-P.

從而,s=m-p,r=n+p

故p+q+r+s=p+q+2q=p+3q=640.

又由于s=m-p=q-2p≥3,故p≤90.

逐一令p為不大于90的質(zhì)數(shù)加以驗證便知此時無解.

若m-p=1,則

而q<m+p<n+p,故g=n-P,r=n+p=2p+q.

p+q+r+s=3p+2q+s

=.

.

.

.

綜上,p=167,q=67,r=401,s=5或p=167,q=67,r=5,s=401.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系.曲線的極坐標方程為.

(1)求曲線的普通方程,曲線的參數(shù)方程;

(2)若分別為曲線,上的動點,求的最小值,并求取得最小值時,點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是放置在桌面的某三棱柱的三視圖,其中網(wǎng)格小正方形邊長為1.若三棱柱表面上的兩點在三視圖中的對應點為、,現(xiàn)一只螞蟻要沿該三棱柱的表面(不包括下底面)從爬到,則所有路徑里最短路徑的長度為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上的最大值為3,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年.將年入流量在以上三段的頻率作為相應段的概率,并假設各年的年入流量相互獨立.

(1)求未來4年中,至多1年的年入流量超過120的概率;

(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關系:

年入流量

發(fā)電量最多可運行臺數(shù)

1

2

3

若某臺發(fā)電機運行,則該臺年利潤為5000萬元;若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應安裝發(fā)電機多少臺?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線

(1)求曲線在點處的切線方程;

(2)求曲線過點的切線方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,圓.

1)若直線過點且到圓心的距離為,求直線的方程;

2)設過點的直線與圓交于、兩點(的斜率為負),當時,求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為正整數(shù)a的各位數(shù)字之和。試求正整數(shù)t的最小值使得在任意t個連續(xù)的正整數(shù)中總能找到一個數(shù)c,滿足。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題:

①對立事件一定是互斥事件;②若A,B為兩個隨機事件,則P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+P(B)+P(C)=1;④若事件A,B滿足P(A)+P(B)=1,則A與B是對立事件.

其中正確命題的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案