【題目】如圖是放置在桌面的某三棱柱的三視圖,其中網(wǎng)格小正方形邊長(zhǎng)為1.若三棱柱表面上的、兩點(diǎn)在三視圖中的對(duì)應(yīng)點(diǎn)為、,現(xiàn)一只螞蟻要沿該三棱柱的表面(不包括下底面)從爬到,則所有路徑里最短路徑的長(zhǎng)度為( )
A. B. C. D.
【答案】A
【解析】
將所經(jīng)過(guò)的2個(gè)表面展開(kāi)到同一個(gè)平面時(shí)連結(jié)這兩點(diǎn)所得線段,分4種情況計(jì)算線段長(zhǎng)度即可判斷。
由三視圖可得該三棱柱側(cè)棱垂直于底面,底面為等腰直角三角形,且側(cè)棱長(zhǎng)為4,底面斜邊長(zhǎng)為4,為下底面一頂點(diǎn),為上底面一直角邊中點(diǎn),如圖所示.因、不在同一表面,故在表面上從到的所有路徑中,至少要經(jīng)過(guò)2個(gè)表面,且在每個(gè)表面里走直線最短,所以將所經(jīng)過(guò)的2個(gè)表面展開(kāi)到同一個(gè)平面時(shí)連結(jié)這兩點(diǎn)的線段最短,共有下列4種情況如圖:
圖(1)可得最短;圖(2)可得最短;圖(3)可得,,則最短;圖(4)可得最短.顯然按圖(1)、(3)路徑走更短,且最短路徑為.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)()
(1)若是的極值,求的值,并求的單調(diào)區(qū)間。
(2)若時(shí),,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),左右焦點(diǎn)分別為和,且橢圓經(jīng)過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓的右頂點(diǎn)作兩條相互垂直的直線,,分別與橢圓交于點(diǎn)(均異于點(diǎn)),求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“勾股定理”在西方被稱(chēng)為“畢達(dá)哥拉斯定理”,三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明.如圖所示的“勾股圓方圖”中,四個(gè)相同的直角三角形與中間的小正方形拼成一個(gè)大正方形,若直角三角形的直角邊的邊長(zhǎng)分別是3和4,在繪圖內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自小正方形的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線交于不同的兩點(diǎn)、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)藥公司研發(fā)一種新的保健產(chǎn)品,從一批產(chǎn)品中抽取200盒作為樣本,測(cè)量產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,該指標(biāo)值越高越好.由測(cè)量結(jié)果得到如下頻率分布直方圖:
(Ⅰ)求,并試估計(jì)這200盒產(chǎn)品的該項(xiàng)指標(biāo)的平均值;
(Ⅱ)① 用樣本估計(jì)總體,由頻率分布直方圖認(rèn)為產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,計(jì)算該批產(chǎn)品指標(biāo)值落在上的概率;參考數(shù)據(jù):附:若,則,.
②國(guó)家有關(guān)部門(mén)規(guī)定每盒產(chǎn)品該項(xiàng)指標(biāo)不低150均為合格,且按指標(biāo)值的從低到高依次分為:合格、優(yōu)良、優(yōu)秀三個(gè)等級(jí),其中為優(yōu)良,不高于180為合格,不低于220為優(yōu)秀,在①的條件下,設(shè)公司生產(chǎn)該產(chǎn)品1萬(wàn)盒的成本為15萬(wàn)元,市場(chǎng)上每盒該產(chǎn)品的等級(jí)售價(jià)(單位:元)如圖表,求該公司每萬(wàn)盒的平均利潤(rùn).
等級(jí) | 合格 | 優(yōu)良 | 優(yōu)秀 |
價(jià)格 | 10 | 20 | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對(duì)課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測(cè)驗(yàn)(指標(biāo)值滿(mǎn)分為100分,分值高者為優(yōu)),根據(jù)測(cè)驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述不正確的是( )
A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)
C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算最強(qiáng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】是否存在互不相同的質(zhì)數(shù)p、q、r、s,使得它們的和為640,且和都是完全平方數(shù)?若存在,求p、q、r、s的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程及曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點(diǎn),設(shè)、中點(diǎn)為,求弦長(zhǎng)以及.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com