【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系.曲線的極坐標方程為.
(1)求曲線的普通方程,曲線的參數(shù)方程;
(2)若分別為曲線,上的動點,求的最小值,并求取得最小值時,點的直角坐標.
【答案】(1) ,的參數(shù)方程為(為參數(shù)). (2)
【解析】
(1)由參數(shù)方程、普通直角坐標方程及極坐標方程間的關(guān)系轉(zhuǎn)化即可;(2)結(jié)合(1)的結(jié)論,設(shè),利用點到直線的距離公式可得到的表達式,利用三角函數(shù)求最值即可得到的最小值,即的最小值,進而可以得到點的直角坐標。
(1)由曲線的參數(shù)方程為(為參數(shù)),
消去,得,
由,
即,
,即,
的參數(shù)方程為(為參數(shù)).
(2)設(shè)曲線上動點為Q,則點到直線的距離:
d=,
當(dāng)時,即時,取得最小值,即的最小值為,
,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()
(1)若是的極值,求的值,并求的單調(diào)區(qū)間。
(2)若時,,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2011年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 |
年份代號t | 1 | 2 | 3 | 4 | 5 |
人均純收入y | 3.1 | 3.6 | 3.9 | 4.4 | 5 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2011年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系.曲線的極坐標方程為.
(1)求曲線的普通方程,曲線的參數(shù)方程;
(2)若分別為曲線,上的動點,求的最小值,并求取得最小值時,點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標原點,左右焦點分別為和,且橢圓經(jīng)過點.
(1)求橢圓的標準方程;
(2)過橢圓的右頂點作兩條相互垂直的直線,,分別與橢圓交于點(均異于點),求證:直線過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”,三國時期吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細證明.如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形,若直角三角形的直角邊的邊長分別是3和4,在繪圖內(nèi)隨機取一點,則此點取自小正方形的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是否存在互不相同的質(zhì)數(shù)p、q、r、s,使得它們的和為640,且和都是完全平方數(shù)?若存在,求p、q、r、s的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com