【題目】一種放射性元素,最初的質(zhì)量為500克,按每年10%衰減.
(1)求t年后,這種放射性元素的質(zhì)量w的表達(dá)式;
(2)用求出的函數(shù)表達(dá)式,求這種放射性元素的半衰期.(放射性元素的原子核有半數(shù)發(fā)生衰變時(shí)所需要的時(shí)間,叫“半衰期”)(lg0.5≈﹣0.3010,lg0.9≈﹣0.0458,結(jié)果精確到0.1).
【答案】
(1)解:最初的質(zhì)量為500g,
經(jīng)過(guò)1年后,ω=500(1﹣10%)=500×0.91,
經(jīng)過(guò)2年后,ω=500×0.9(1﹣10%)=500×0.92,
由此推知,t年后,ω=500×0.9t,
∴t年后,ω關(guān)于t的表達(dá)式為ω=500×0.9t
(2)解:根據(jù)題意得,解方程500×0.9t=250,0.9t=0.5
∴l(xiāng)g0.9t=lg0.5,∴tlg0.9=lg0.5,
∴t= ≈6.6(年),
即這種放射性元素的半衰期約為6.6年
【解析】(1)根據(jù)最初的質(zhì)量為500克,按每年10%衰減,可得t年后,這種放射性元素的質(zhì)量w的表達(dá)式;(2)根據(jù)題意得,解方程500×0.9t=250,兩邊取對(duì)數(shù),再用換底公式變形,代入已知數(shù)據(jù)可得x的近似值,四舍五入即可得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“一帶一路”的建設(shè)中,中石化集團(tuán)獲得了某地深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料下表:
(1)在散點(diǎn)圖中號(hào)舊井位置大致分布在一條直線附近,借助前5組數(shù)據(jù)求得回歸線方程為,求,并估計(jì)的預(yù)報(bào)值;
(2)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)1、3、5、7號(hào)井計(jì)算出的的值(精確到0.01)相比于(1)中的值之差(即:)不超過(guò)10%,則使用位置最接近的已有舊井,否則在新位置打井,請(qǐng)判斷可否使用舊井?(參考公式和計(jì)算結(jié)果:,)
(3)設(shè)出油量與鉆探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,在原有井號(hào)的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目.根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計(jì)劃投資金額不超過(guò)10萬(wàn)元,要求確?赡艿馁Y金虧損不超過(guò)1.8萬(wàn)元.問(wèn)投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少萬(wàn)元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x∈R|2x﹣8=0},B={x∈R|x2﹣2(m+1)x+m2=0}
(1)若m=4,求A∪B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等比數(shù)列{an}的前項(xiàng)n和Sn , a2= ,且S1+ ,S2 , S3成等差數(shù)列,數(shù)列{bn}滿足bn=2n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn=anbn , 若對(duì)任意n∈N+ , 不等式c1+c2+…+cn≥ λ+2Sn﹣1恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}是首項(xiàng)為a1= ,公比q= 的等比數(shù)列,設(shè)bn+2=3log an(n∈N*),數(shù)列{cn}滿足cn=anbn .
(1)求證:{bn}是等差數(shù)列;
(2)求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)若cn≤ +m﹣1對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù) 的單調(diào)遞減區(qū)間為( )
A.(﹣∞,+∞)
B.(﹣∞,0)∪(0,+∞)
C.(﹣∞,0),(0,+∞)
D.(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】祖暅?zhǔn)悄媳背瘯r(shí)代的偉大科學(xué)家,5世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢(shì)既同,則積不容異”.意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積都相等,那么這兩個(gè)幾何體的體積一定相等.現(xiàn)有以下四個(gè)幾何體:圖①是從圓柱中挖出一個(gè)圓錐所得的幾何體;圖②、圖③、圖④分別是圓錐、圓臺(tái)和半球,則滿足祖暅原理的兩個(gè)幾何體為( )
A. ①② B. ①③ C. ②④ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】山西某公司有一批專業(yè)技術(shù)人員,對(duì)他們進(jìn)行年齡狀況和接受教育程度(本科學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如表:
學(xué)歷 | 35歲以下 | 3550歲 | 50歲以上 |
本科 | 80 | 30 | 20 |
研究生 | 20 |
(Ⅰ)用分層抽樣的方法在歲年齡段的專業(yè)技術(shù)人員中抽取一個(gè)容量為10的樣本,將該樣本看成一個(gè)總體,從中任取3人,求至少有1人的學(xué)歷為研究生的概率;
(Ⅱ)在這個(gè)公司的專業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取個(gè)人,其中35歲以下48人,50歲以上10人,再?gòu)倪@個(gè)人中隨機(jī)抽取出1人,此人的年齡為50歲以上的概率為,求、的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com