【題目】某企業(yè)為確定下一年投入某種產(chǎn)品的研發(fā)費用,需了解年研發(fā)費用(單位:千萬元)對年銷售量(單位:千萬件)的影響,統(tǒng)計了近10年投入的年研發(fā)費用與年銷售量的數(shù)據(jù),得到散點圖如圖所示.

1)利用散點圖判斷(其中均為大于0的常數(shù))哪一個更適合作為年銷售量和年研發(fā)費用的回歸方程類型(只要給出判斷即可,不必說明理由);

2)對數(shù)據(jù)作出如下處理,令,得到相關(guān)統(tǒng)計量的值如表:根據(jù)第(1)問的判斷結(jié)果及表中數(shù)據(jù),求關(guān)于的回歸方程;

15

15

28.25

56.5

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.

【答案】1更合適(2

【解析】

1)散點圖中點的分布成冪函數(shù)走勢,故可得答案.

2)將非線性的回歸方程整理,對其兩邊取對數(shù),得,即,由表中數(shù)據(jù)求得,令,由即可表示,將其代入既得答案.

1)由散點圖可知,選擇回歸類型更合適;

2)對兩邊取對數(shù),得,即.

由表中數(shù)據(jù)求得.

,則,即.

∴年銷售量與年研發(fā)費用的回歸方程為;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求曲線的普通方程及極坐標(biāo)方程;

(2)直線的極坐標(biāo)方程是,射線 與曲線交于點與直線交于點,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線與直線)交于,兩點.

1)當(dāng)時,分別求在點處的切線方程;

2軸上是否存在點,使得當(dāng)變動時,總有?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二手經(jīng)銷商小王對其所經(jīng)營的型號二手汽車的使用年數(shù)與銷售價格(單位:萬元/輛)進行整理,得到如下數(shù)據(jù):

下面是關(guān)于的折線圖:

(1)由折線圖可以看出,可以用線性回歸模型擬合的關(guān)系,請用相關(guān)系數(shù)加以說明;

(2)求關(guān)于的回歸方程并預(yù)測某輛型號二手汽車當(dāng)使用年數(shù)為9年時售價大約為多少?(、小數(shù)點后保留兩位有效數(shù)字).

(3)基于成本的考慮,該型號二手車的售價不得低于7118元,請根據(jù)(2)求出的回歸方程預(yù)測在收購該型號二手車時車輛的使用年數(shù)不得超過多少年?

參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:

,. .

參考數(shù)據(jù):

,,,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列為公差不為0的等差數(shù)列,首項,,成等比數(shù)列.

1)求數(shù)列的通項公式;

2)設(shè)數(shù)列的前n項和為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為弘揚傳統(tǒng)文化,某校舉行詩詞大賽.經(jīng)過層層選拔,最終甲乙兩人進入總決賽,爭奪冠軍.決賽規(guī)則如下:①比賽共設(shè)有五道題;②雙方輪流答題,每次回答一道,兩人答題的先后順序通過抽簽決定;③若答對,自己得1分;若答錯,則對方得1分;④先得3分者獲勝.已知甲、乙答對每道題的概率分別為,且每次答題的結(jié)果相互獨立.

(Ⅰ)若乙先答題,求甲3:0獲勝的概率;

(Ⅱ)若甲先答題,記乙所得分數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種汽車購買時費用為144萬元,每年應(yīng)交付保險費、養(yǎng)路費及汽油費共0.9萬元,汽車的維修費為:第一年0.2萬元,第二年0.4萬元,第三年0.6萬元,……,依等差數(shù)列逐年遞增.

)設(shè)使用n年該車的總費用(包括購車費用)為f(n),試寫出f(n)的表達式;

)求這種汽車使用多少年報廢最合算(即該車使用多少年平均費用最少).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線兩點, 的中點,過軸的垂線交點.

(1)證明:拋物線點處的切線與平行;

(2)是否存在實數(shù),使以為直徑的圓經(jīng)過點?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點,,離心率為,的周長等于,點、在橢圓上,且邊上.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)如圖,過圓上任意一點作橢圓的兩條切線與圓交與點、,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案