【題目】當(dāng)m∈N* , 命題“若m>0,則方程x2+x﹣m=0有實(shí)根”的逆否命題是(
A.若方程x2+x﹣m=0有實(shí)根,則m>0
B.若方程x2+x﹣m=0有實(shí)根,則m≤0
C.若方程x2+x﹣m=0沒(méi)有實(shí)根,則m>0
D.若方程x2+x﹣m=0沒(méi)有實(shí)根,則m≤0

【答案】D
【解析】解:由逆否命題的定義可知:當(dāng)m∈N* , 命題“若m>0,則方程x2+x﹣m=0有實(shí)根”的逆否命題是:若方程x2+x﹣m=0沒(méi)有實(shí)根,則m≤0. 故選:D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用四種命題間的逆否關(guān)系的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握交換原命題的條件和結(jié)論,所得的命題是逆命題;同時(shí)否定原命題的條件和結(jié)論,所得的命題是否命題;交換原命題的條件和結(jié)論,并且同時(shí)否定,所得的命題是逆否命題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},則(UA)∪B為( 。
A.{1,2,4}
B.{2,3,4}
C.{0,2,3,4}
D.{0,2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當(dāng)x∈[﹣3,﹣1)時(shí),f(x)=﹣(x+2)2 , 當(dāng)x∈[﹣1,3)時(shí),f(x)=x,則f(1)+f(2)+f(3)+…+f(2017)的值為(
A.336
B.337
C.1676
D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接中共十九大,某校舉辦了“祖國(guó),你好”詩(shī)歌朗誦比賽.該校高三年級(jí)準(zhǔn)備從包括甲、乙、丙在內(nèi)的7名學(xué)生中選派4名學(xué)生參加,要求甲、乙、丙這3名學(xué)生中至少有1人參加,且當(dāng)這 3名學(xué)生都參加時(shí),甲和乙的朗誦順序不能相鄰,那么選派的4名學(xué)生不同的朗誦順序的種數(shù)為(
A.720
B.768
C.810
D.816

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a<0,﹣1<b<0,則下列不等式關(guān)系成立的是(
A.ab2<ab<a
B.a<ab<ab2
C.ab2<a<ab
D.a<ab2<ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由1=12 , 1+3=22 , 1+3+5=32 , 1+3+5+7=42 , …,得到1+3+…+(2n﹣1)=n2用的是 (
A.特殊推理
B.演繹推理
C.類比推理
D.歸納推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知奇函數(shù)f(x)滿足對(duì)任意x∈R都有f(x+6)=f(x)成立,且f(1)=1,則f(2015)+f(2016)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若奇函數(shù)f(x)在[3,7]上是增函數(shù),且最小值是1,則它在[﹣7,﹣3]上是(
A.增函數(shù)且最小值是﹣1
B.增函數(shù)且最大值是﹣1
C.減函數(shù)且最大值是﹣1
D.減函數(shù)且最小值是﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是(
A.f(x)=x2
B.f(x)=2x
C.y=x
D.y=﹣3x+1

查看答案和解析>>

同步練習(xí)冊(cè)答案