【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為.

1)求直線l的普通方程和圓C的直角坐標方程;

2)直線l與圓C交于AB兩點,點P(2,1),求|PA||PB|的值.

【答案】1)直線的普通方程,圓的直角坐標方程:.2

【解析】

1)直接利用轉(zhuǎn)換關系的應用,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉(zhuǎn)換.

2)將直線的參數(shù)方程代入圓的直角坐標方程,利用一元二次方程根和系數(shù)關系式即可求解.

1)直線l的參數(shù)方程為t為參數(shù)),轉(zhuǎn)換為直角坐標方程為x+y30.

C的極坐標方程為ρ24ρcosθ3,轉(zhuǎn)換為直角坐標方程為x2+y24x30.

2)把直線l的參數(shù)方程為t為參數(shù)),代入圓的直角坐標方程x2+y24x30

得到,

所以|PA||PB||t1t2|6.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A.若散點圖中的樣本點散布在從左下角到右上角的區(qū)域,則散點圖中的兩個變量的相關關系為負相關

B.殘差平方和越小的模型,擬合的效果越好

C.用相關指數(shù)來刻畫回歸效果,的值越小,說明模型的擬合效果越好

D.線性相關系數(shù)越大,兩個變量的線性相關性越強;反之,線性相關性越弱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件

B. p:,則

C. “若,則”的否命題是“若,則

D. 為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A是拋物線Ey22px(p>0)上的一點,以點A和點B(2,0)為直徑兩端點的圓C交直線x1M,N兩點.

1)若|MN|2,求拋物線E的方程;

2)若0p1,拋物線E與圓(x5)2+y2=9x軸上方的交點為PQ,點GPQ的中點,O為坐標原點,求直線OG斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從甲地到乙地要經(jīng)過3個十字路口,設各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為.

(Ⅰ)設表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機變量的分布列和數(shù)學期望;

(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,求函數(shù)的最大值;

2)令,討論函數(shù)的單調(diào)區(qū)間;

3)若,正實數(shù)滿足,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.

(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】楊輝,字謙光,南宋時期杭州人.在他1261年所著的《詳解九章算法》一書中,輯錄了如圖所示的三角形數(shù)表,稱之為開方作法本源圖,并說明此表引自11世紀中葉(約公元1050年)賈憲的《釋鎖算術》,并繪畫了古法七乘方圖”.故此,楊輝三角又被稱為賈憲三角”.楊輝三角是一個由數(shù)字排列成的三角形數(shù)表,一般形式如下:

基于上述規(guī)律,可以推測,當時,從左往右第22個數(shù)為_____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開展技術創(chuàng)新活動,在A,B實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在A,B試驗地隨機抽選各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優(yōu)質(zhì)花苗.

1)求圖中a的值,并求綜合評分的中位數(shù);

2)用樣本估計總體,以頻率作為概率,若在A,B兩塊實驗地隨機抽取3棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學期望;

3)填寫下面的列聯(lián)表,并判斷是否有90%的把握認為優(yōu)質(zhì)花苗與培育方法有關.

優(yōu)質(zhì)花苗

非優(yōu)質(zhì)花苗

合計

甲培育法

20

乙培育法

10

合計

附:下面的臨界值表僅供參考.

015

010

005

0025

0010

0005

0001

2072

2706

3841

5024

6635

7879

10828

(參考公式:,其中.)

查看答案和解析>>

同步練習冊答案