如圖,已知橢圓C: 的左、右焦點(diǎn)分別為
,離心率為
,點(diǎn)A是橢圓上任一點(diǎn),
的周長(zhǎng)為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)任作一動(dòng)直線l交橢圓C于
兩點(diǎn),記
,若在線段
上取一點(diǎn)R,使得
,則當(dāng)直線l轉(zhuǎn)動(dòng)時(shí),點(diǎn)R在某一定直線上運(yùn)動(dòng),求該定直線的方程.
(Ⅰ);(Ⅱ)
.
解析試題分析:(Ⅰ)利用三角形的周長(zhǎng)為
及離心率可求解;(Ⅱ)利用
尋找
的坐標(biāo)與實(shí)數(shù)
之間的關(guān)系,再利用
關(guān)系找到點(diǎn)R的坐標(biāo)為(
)與
之間的關(guān)系,化簡(jiǎn)求解.
試題解析:(Ⅰ)∵的周長(zhǎng)為
,
∴即
. (1分)
又解得
(3分)
∴橢圓C的方程為 (4分)
(Ⅱ)由題意知,直線l的斜率必存在,
設(shè)其方程為
由
得 (6分)
則 (7分)
由,得
∴∴
. (8分)
設(shè)點(diǎn)R的坐標(biāo)為(),由
,
得
∴
解得 (10分)
而
∴ (13分)
故點(diǎn)R在定直線上. (14分)
考點(diǎn):1.橢圓的定義;2.直線與圓的位置關(guān)系;3.向量共線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C長(zhǎng)軸的兩個(gè)頂點(diǎn)為A(-2,0),B(2,0),且其離心率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若N是直線x=2上不同于點(diǎn)B的任意一點(diǎn),直線AN與橢圓C交于點(diǎn)Q,設(shè)直線QB與以NB為直徑的圓的一個(gè)交點(diǎn)為M(異于點(diǎn)B),求證:直線NM經(jīng)過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,曲線與曲線
相交于
、
、
、
四個(gè)點(diǎn).
⑴ 求的取值范圍;
⑵ 求四邊形的面積的最大值及此時(shí)對(duì)角線
與
的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓的左、右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),過(guò)F1作與x軸不重合的直線l交橢圓于A,B兩點(diǎn).
(I)若ΔABF2為正三角形,求橢圓的離心率;
(II)若橢圓的離心率滿足,
為坐標(biāo)原點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓,
為其右焦點(diǎn),離心率為
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn),問(wèn)是否存在直線
,使
與橢圓
交于
兩點(diǎn),且
.若存在,求出
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是橢圓
的右焦點(diǎn),圓
與
軸交于
兩點(diǎn),
是橢圓
與圓
的一個(gè)交點(diǎn),且
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)過(guò)點(diǎn)與圓
相切的直線
與
的另一交點(diǎn)為
,且
的面積等于
,求橢圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的四個(gè)頂點(diǎn)恰好是一邊長(zhǎng)為2,一內(nèi)角為
的菱形的四個(gè)頂點(diǎn).
(I)求橢圓的方程;
(II)直線與橢圓
交于
,
兩點(diǎn),且線段
的垂直平分線經(jīng)過(guò)點(diǎn)
,求
(
為原點(diǎn))面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知曲線,曲線
,P是平面上一點(diǎn),若存在過(guò)點(diǎn)P的直線與
都有公共點(diǎn),則稱P為“C1—C2型點(diǎn)”.
(1)在正確證明的左焦點(diǎn)是“C1—C2型點(diǎn)”時(shí),要使用一條過(guò)該焦點(diǎn)的直線,試寫(xiě)出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線與
有公共點(diǎn),求證
,進(jìn)而證明原點(diǎn)不是“C1—C2型點(diǎn)”;
(3)求證:圓內(nèi)的點(diǎn)都不是“C1—C2型點(diǎn)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線C:(a>0,b>0)的左、右焦點(diǎn)分別為
、
,離心率為3,直線y=2與C的兩個(gè)交點(diǎn)間的距離為
.
(Ⅰ)求a,b;
(Ⅱ)設(shè)過(guò)的直線l與C的左、右兩支分別交于A、B兩點(diǎn),且
,證明:
、
、
成等比數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com