【題目】某校對2000名高一新生進(jìn)行英語特長測試選拔,現(xiàn)抽取部分學(xué)生的英語成績,將所得數(shù)據(jù)整理后得出頻率分布直方圖如圖所示,圖中從左到右各小長方形面積之比為,第二小組頻數(shù)為12.
(Ⅰ)求第二小組的頻率及抽取的學(xué)生人數(shù);
(Ⅱ)若分?jǐn)?shù)在120分以上(含120分)才有資格被錄取,約有多少學(xué)生有資格被錄?
(Ⅲ)學(xué)校打算從分?jǐn)?shù)在和分內(nèi)的學(xué)生中,按分層抽樣抽取4人進(jìn)行改進(jìn)意見問卷調(diào)查,若調(diào)查老師隨機(jī)從這4人的問卷中(每人一份)隨機(jī)抽取兩份調(diào)閱,求這兩份問卷都來自英語測試成績在分的學(xué)生的概率.
【答案】(Ⅰ),(Ⅱ)(Ⅲ)
【解析】
試題分析:(Ⅰ)頻率分布直方圖中小長方形面積等于對應(yīng)區(qū)間概率,所以第二小組的頻率:,因此抽取的學(xué)生人數(shù)是人(Ⅱ)先確定概率:有資格被錄取的學(xué)生頻率約為,再確定人數(shù)人(Ⅲ)先按分層抽樣確定分?jǐn)?shù)在和所抽人數(shù)比為,即4人有3人分?jǐn)?shù)在分內(nèi),再利用枚舉法確定隨機(jī)抽取兩份可能數(shù)為6種,而這兩份問卷都來自有3種,因此所求概率為
試題解析:(Ⅰ)∵頻率分布直方圖以面積的形式反映了數(shù)據(jù)落在各小組內(nèi)的頻率大小,
∴第二小組的頻率:;
∵第二小組頻數(shù)為12,∴抽取的學(xué)生人數(shù)是人.
(Ⅱ)由圖知,有資格被錄取的學(xué)生頻率約為,
∴約有人
(Ⅲ)由圖知,分?jǐn)?shù)在分內(nèi)的學(xué)生的頻率,
∵共有2000學(xué)生參加測試,∴分?jǐn)?shù)在分內(nèi)的學(xué)生約為人,
分?jǐn)?shù)在分內(nèi)的學(xué)生約為人.
故按分層抽樣的4人有3人分?jǐn)?shù)在分內(nèi),設(shè)為;
有1人分?jǐn)?shù)在分內(nèi),設(shè)為.任取兩人,有共6種.
這兩人都是分?jǐn)?shù)在分內(nèi)的有三種,故所求概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (其中e是自然對數(shù)的底數(shù),k∈R).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)函數(shù)有兩個零點(diǎn)時,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高三文科班學(xué)生參加了數(shù)學(xué)與地理水平測試,學(xué)校從測試合格的學(xué)生中隨機(jī)抽取100人的成績進(jìn)行統(tǒng)計分析.抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?/span>
成績分為優(yōu)秀、良好、及格三個等級,橫向、縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?0+18+4=42人.
(1)若在該樣本中,數(shù)學(xué)成績優(yōu)秀率為30%,求a,b的值;
(2)若樣本中,求在地理成績及格的學(xué)生中,數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為實數(shù),函數(shù)f(x)=x2+|x-a|+1,x∈R.
(1)討論f(x)的奇偶性;
(2)求f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年1月,某國宣布成功進(jìn)行氫彈試驗后,A,B,C,D四國領(lǐng)導(dǎo)人及聯(lián)合國主席紛紛表示譴責(zé),就此,某電視臺特別邀請一軍事專家對這一事件進(jìn)行評論,若該軍事專家計劃從A,B,C,D四國及聯(lián)合國主席這5個領(lǐng)導(dǎo)人中任選2人的發(fā)言態(tài)度進(jìn)行評論,那么,他評論的這2人中至少包括A、B一國領(lǐng)導(dǎo)人的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐PABCD的三視圖如圖所示,四棱錐PABCD的五個頂點(diǎn)都在一個球面上, E,F分別是棱AB,CD的中點(diǎn),直線EF被球面所截得的線段長為2 ,則該球的表面積為
A. 12π B. 24π C. 36π D. 48π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (a為常數(shù))有兩個極值點(diǎn).
(1)求實數(shù)a的取值范圍;
(2)設(shè)f(x)的兩個極值點(diǎn)分別為x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐S-ABCD中的底面是菱形,∠BAD=60°,SD⊥底面ABCD,SD=AB=2,E、F分別為SB、CD的中點(diǎn).
(Ⅰ)求證:EF∥平面SAD;
(Ⅱ)點(diǎn)P是SB上一點(diǎn),若SB⊥平面APC,試確定點(diǎn)P的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為拋物線C:的焦點(diǎn),過點(diǎn)的動直線與拋物線C交于,兩點(diǎn),如圖.當(dāng)直線與軸垂直時,.
(1)求拋物線C的方程;
(2)已知點(diǎn),設(shè)直線PM的斜率為,直線PN的斜率為.請判斷是否為定值,若是,寫出這個定值,并證明你的結(jié)論;若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com