【題目】四棱錐S-ABCD中的底面是菱形,∠BAD=60°,SD⊥底面ABCD,SD=AB=2,E、F分別為SB、CD的中點(diǎn).
(Ⅰ)求證:EF∥平面SAD;
(Ⅱ)點(diǎn)P是SB上一點(diǎn),若SB⊥平面APC,試確定點(diǎn)P的位置.
【答案】(1)見解析;(2) 當(dāng)SP∶PB=3∶1時(shí),SB⊥平面APC.
【解析】試題分析:(Ⅰ)取SA的中點(diǎn)M,連接EM,DM,可證四邊形EFDM是平行四邊形,即可證明EF∥平面SAD;(Ⅱ)連接BD,由ABCD是菱形,AB=2,∠BAD=60°,可得BD,再由SD⊥底面ABCD,SD=2,可得SB=SC,取BC中點(diǎn)Q,連接SQ,作CP⊥SB于點(diǎn)P,可證得△BSQ∽△BCP,即可得SP∶PB,然后連接AP,可證AP⊥SB,即可證此時(shí)SB⊥平面APC.
試題解析:(Ⅰ)證明:取SA的中點(diǎn)M,連接EM,DM
在△SAB中,EM∥AB,EM=AB
又∵DF∥AB,DF=AB
∴EM=DF,EM∥DF
∴四邊形EFDM是平行四邊形
∴EF∥DM
又∵ EF平面SAD,DM平面SAD
∴ EF∥平面SAD
(Ⅱ)解:連接BD,因?yàn)?/span>ABCD是菱形,AB=2,∠BAD=60°,所以BD=2,
因?yàn)?/span>SD⊥底面ABCD,SD=2,所以,可得SB=SC=
在等腰三角形SBC中,取BC中點(diǎn)Q,連接SQ,作CP⊥SB于點(diǎn)P,
可證得△BSQ∽△BCP,所以,即,得
此時(shí)SP∶PB=
下面證明當(dāng)SP∶PB=3∶1時(shí),SB⊥平面APC.
連接AP,易知△APB≌△CPB,所以∠APB=∠CPB=90°,即AP⊥SB,
又CP⊥SB,AP∩CP=P,AP平面APC,CP平面APC,
所以SB⊥平面APC.
所以當(dāng)SP∶PB=3∶1時(shí),SB⊥平面APC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0),長軸長為4,離心率為.
(Ⅰ)橢圓的求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A,B,且∠AOB為銳角(O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校對(duì)2000名高一新生進(jìn)行英語特長測試選拔,現(xiàn)抽取部分學(xué)生的英語成績,將所得數(shù)據(jù)整理后得出頻率分布直方圖如圖所示,圖中從左到右各小長方形面積之比為,第二小組頻數(shù)為12.
(Ⅰ)求第二小組的頻率及抽取的學(xué)生人數(shù);
(Ⅱ)若分?jǐn)?shù)在120分以上(含120分)才有資格被錄取,約有多少學(xué)生有資格被錄。
(Ⅲ)學(xué)校打算從分?jǐn)?shù)在和分內(nèi)的學(xué)生中,按分層抽樣抽取4人進(jìn)行改進(jìn)意見問卷調(diào)查,若調(diào)查老師隨機(jī)從這4人的問卷中(每人一份)隨機(jī)抽取兩份調(diào)閱,求這兩份問卷都來自英語測試成績在分的學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=ax(a>0)上一點(diǎn)P(t, )到焦點(diǎn)F的距離為2t.
(l)求拋物線C的方程;
(2)拋物線上一點(diǎn)A的縱坐標(biāo)為1,過點(diǎn)Q(3,﹣1)的直線與拋物線C交于M,N兩個(gè)不同的點(diǎn)(均與點(diǎn)A不重合),設(shè)直線AM,AN的斜率分別為k1,k2,求證:k1×k2為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,已知(p、q為常數(shù), ),又, , .
(1)求p、q的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)是否存在正整數(shù)m、n,使成立?若存在,求出所有符合條件的有序?qū)崝?shù)對(duì);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一水域上建一個(gè)演藝廣場.演藝廣場由看臺(tái)Ⅰ,看臺(tái)Ⅱ,三角形水域,及矩形表演臺(tái)四個(gè)部分構(gòu)成(如圖).看臺(tái)Ⅰ,看臺(tái)Ⅱ是分別以, 為直徑的兩個(gè)半圓形區(qū)域,且看臺(tái)Ⅰ的面積是看臺(tái)Ⅱ的面積的3倍;矩形表演臺(tái)中, 米;三角形水域的面積為平方米.設(shè).
(Ⅰ)當(dāng)時(shí),求的長;
(Ⅱ)若表演臺(tái)每平方米的造價(jià)為萬元,求表演臺(tái)的最低造價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856325)已知函數(shù)f(x)=+eln x,直線l:y=kx(k≠0)與函數(shù)f(x)的圖象相切于點(diǎn)A(t,f(t))(f(t)≠0),則( )
A. t∈(0,1) B. t∈(1,e) C. t∈(e,3) D. t∈(3,e2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ) 在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | -5 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點(diǎn)向左平行移動(dòng)θ(θ>0)個(gè)單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個(gè)對(duì)稱中心為,求θ的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com