【題目】設(shè)a為實數(shù),函數(shù)f(x)=x2+|x-a|+1,x∈R.
(1)討論f(x)的奇偶性;
(2)求f(x)的最小值.
【答案】(1)當(dāng)時, 偶函數(shù),當(dāng)時, 為非奇非偶函數(shù);(2).
【解析】試題分析:(1)對于函數(shù) f(x)=x2+|x﹣a|+1,分當(dāng)a=0時、和當(dāng)a≠0時兩種情況,分別討論f(x)的奇偶性;
(2)當(dāng)x≤a時,f(x)=x2﹣x+a+1=(x﹣)2+a+,分a>時和a≤時兩種情況,分別求得函數(shù)f(x)的最小值.②當(dāng)x>a 時,f(x)=x2+x﹣a+1=(x+)2﹣a+,分a>﹣時和當(dāng)a≤﹣時兩種情況,分別求得函數(shù)f(x)的最小值.
解:(1)對于函數(shù) f(x)=x2+|x﹣a|+1,
當(dāng)a=0時,f(x)=x2+|x|+1為偶函數(shù),
當(dāng)a≠0時,f(x)=x2+|x|+1為非奇非偶函數(shù).
(2)①當(dāng)x≤a時,f(x)=x2﹣x+a+1=(x﹣)2+a+,
若a>時,函數(shù)f(x)的最小值為f()=a+;
若a≤時,函數(shù)f(x)的最小值為f(a)=a2+1.
②當(dāng)x>a 時,f(x)=x2+x﹣a+1=(x+)2﹣a+,
若a>﹣時,函數(shù)f(x)的最小值為f(a)=a2+1;
若a≤﹣時,函數(shù)f(x)的最小值為f(﹣)=﹣a+.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: 經(jīng)過點,離心率為.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若A1,A2分別是橢圓E的左、右頂點,過點A2作直線l與x軸垂直,點P是橢圓E上的任意一點(不同于橢圓E的四個頂點),連接PA1交直線l于點B,點Q為線段A2B的中點,求證:直線PQ與橢圓E只有一個公共點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0),長軸長為4,離心率為.
(Ⅰ)橢圓的求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A,B,且∠AOB為銳角(O為坐標(biāo)原點),求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856261)
某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動,按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(Ⅰ)下表是年齡的頻率分布表,求正整數(shù)a,b的值;
(Ⅱ)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組抽取的員工的人數(shù)分別是多少?
(Ⅲ)在(Ⅱ)的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動,求至少有1人年齡在第3組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求二面角F﹣BE﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(2x+b)ex,F(x)=bx-ln x,b∈R.
(1)若b<0,且存在區(qū)間M,使f(x)和F(x)在區(qū)間M上具有相同的單調(diào)性,求實數(shù)b的取值范圍;
(2)若F(x+1)>b對任意x∈(0,+∞)恒成立,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校對2000名高一新生進(jìn)行英語特長測試選拔,現(xiàn)抽取部分學(xué)生的英語成績,將所得數(shù)據(jù)整理后得出頻率分布直方圖如圖所示,圖中從左到右各小長方形面積之比為,第二小組頻數(shù)為12.
(Ⅰ)求第二小組的頻率及抽取的學(xué)生人數(shù);
(Ⅱ)若分?jǐn)?shù)在120分以上(含120分)才有資格被錄取,約有多少學(xué)生有資格被錄?
(Ⅲ)學(xué)校打算從分?jǐn)?shù)在和分內(nèi)的學(xué)生中,按分層抽樣抽取4人進(jìn)行改進(jìn)意見問卷調(diào)查,若調(diào)查老師隨機(jī)從這4人的問卷中(每人一份)隨機(jī)抽取兩份調(diào)閱,求這兩份問卷都來自英語測試成績在分的學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=ax(a>0)上一點P(t, )到焦點F的距離為2t.
(l)求拋物線C的方程;
(2)拋物線上一點A的縱坐標(biāo)為1,過點Q(3,﹣1)的直線與拋物線C交于M,N兩個不同的點(均與點A不重合),設(shè)直線AM,AN的斜率分別為k1,k2,求證:k1×k2為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856325)已知函數(shù)f(x)=+eln x,直線l:y=kx(k≠0)與函數(shù)f(x)的圖象相切于點A(t,f(t))(f(t)≠0),則( )
A. t∈(0,1) B. t∈(1,e) C. t∈(e,3) D. t∈(3,e2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com