如圖,雙曲線與拋物線相交于,直線AC、BD的交點(diǎn)為P(0,p)。

(I)試用m表示
(II)當(dāng)m變化時(shí),求p的取值范圍。

(Ⅰ)x1x2·
(Ⅱ)p的取值范圍是

解析試題分析:(Ⅰ)依題意,A、B、C、D四點(diǎn)坐標(biāo)是下面方程組的解:

消去x,得y2-y+1-m=0,                     2分
由Δ=1-4(1-m)>0,得m>,
且y1+y2=1,y1y2=1-m.
x1x2·.    6分
(Ⅱ)由向量=(x1,y1-p)與=(-x2,y2-p)共線,
得x1(y2-p)+x2(y1-p)=0,
∴p=            9分

∵m>,∴0<p<
故p的取值范圍是.                     12分
考點(diǎn):雙曲線、拋物線的位置關(guān)系,平面向量的坐標(biāo)運(yùn)算。
點(diǎn)評(píng):中檔題,涉及曲線的位置關(guān)系問題,往往通過聯(lián)立方程組,消元后,應(yīng)用韋達(dá)定理,簡化運(yùn)算過程。本題(II)通過應(yīng)用平面向量共線的條件,建立了p,m的關(guān)系,利用函數(shù)的觀點(diǎn),確定得到p的范圍。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知A、B、C是橢圓W:上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
(I)當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積;
(II)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義:設(shè)分別為曲線上的點(diǎn),把兩點(diǎn)距離的最小值稱為曲線的距離.
(1)求曲線到直線的距離;
(2)已知曲線到直線的距離為,求實(shí)數(shù)的值;
(3)求圓到曲線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,分別是橢圓的左、右焦點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)是圓的一條直徑的兩個(gè)端點(diǎn)。
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)過點(diǎn)的直線被橢圓和圓所截得的弦長分別為,。當(dāng)最大時(shí),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)分別是橢圓:的左、右焦點(diǎn),過傾斜角為的直線 與該橢圓相交于P,兩點(diǎn),且.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)點(diǎn) 滿足,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知兩點(diǎn),點(diǎn)在以為焦點(diǎn)的橢圓上,且、 構(gòu)成等差數(shù)列.

(1)求橢圓的方程;
(2)如圖,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn)是直線上的兩點(diǎn),且,. 求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右焦點(diǎn)在圓上,直線交橢圓于、兩點(diǎn).
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若OM⊥ON(為坐標(biāo)原點(diǎn)),求的值;
(Ⅲ) 設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為不重合),且直線軸交于點(diǎn),試問的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:圓過橢圓的兩焦點(diǎn),與橢圓有且僅有兩個(gè)公共點(diǎn):直線與圓相切 ,與橢圓相交于A,B兩點(diǎn)記 
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)求的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓
(Ⅰ)設(shè)橢圓的半焦距,且成等差數(shù)列,求橢圓的方程;
(Ⅱ)設(shè)(1)中的橢圓與直線相交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案