【題目】已知函數(shù),,是實(shí)數(shù).

)若處取得極值,的值;

)若在區(qū)間為增函數(shù),的取值范圍;

)在(Ⅱ)的條件下,函數(shù)有三個(gè)零點(diǎn),的取值范圍.

【答案】;(;(

【解析】試題()由極值的定義知,由此可求得值;()題意說(shuō)明

在區(qū)間恒成立, 上恒成立,由不等式性質(zhì)可得的范圍;()函數(shù)是三次函數(shù),它有三個(gè)零點(diǎn),則此函數(shù)在上必定有在一個(gè)極大值也有一個(gè)極小值,且極大值大于0.極小值小于0,利用導(dǎo)數(shù)確定出極值點(diǎn),再解相應(yīng)不等式組即可.

試題解析:(

處取得極值,,

所以(適合題意)

,因?yàn)?/span>在區(qū)間為增函數(shù),

所以在區(qū)間恒成立,

所以恒成立,恒成立

由于,.的取值范圍是

,

,

當(dāng)時(shí),,上是增函數(shù),顯然不合題意

當(dāng)時(shí),、的變化情況如下表:

要使有三個(gè)零點(diǎn),

故需,

解得.所以的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形均為平行四邊形,點(diǎn)在平面內(nèi)的射影恰好為點(diǎn),以為直徑的圓經(jīng)過(guò)點(diǎn),,的中點(diǎn)為的中點(diǎn)為,且

(Ⅰ)求證:平面平面

(Ⅱ)求二面角的余弦值. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求曲線的普通方程及極坐標(biāo)方程;

(2)直線的極坐標(biāo)方程是,射線 與曲線交于點(diǎn)與直線交于點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的內(nèi)角,,的對(duì)邊分別為,,已知 ,.

(1)求角;

(2)若點(diǎn)滿足,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的焦點(diǎn)為,拋物線上一定點(diǎn)

1)求拋物線的方程及準(zhǔn)線的方程;

2)過(guò)焦點(diǎn)的直線(不經(jīng)過(guò)點(diǎn))與拋物線交于兩點(diǎn),與準(zhǔn)線交于點(diǎn),記的斜率分別為,問(wèn)是否存在常數(shù),使得成立?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,直線經(jīng)過(guò)橢圓的左頂點(diǎn).

1)求橢圓的方程;

2)設(shè)直線)交橢圓兩點(diǎn)(不同于點(diǎn).過(guò)原點(diǎn)的一條直線與直線交于點(diǎn),與直線分別交于點(diǎn).

(。┊(dāng)時(shí),求的最大值;

(ⅱ)若,求證:點(diǎn)在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線與直線)交于兩點(diǎn).

1)當(dāng)時(shí),分別求在點(diǎn)處的切線方程;

2軸上是否存在點(diǎn),使得當(dāng)變動(dòng)時(shí),總有?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】二手經(jīng)銷商小王對(duì)其所經(jīng)營(yíng)的型號(hào)二手汽車(chē)的使用年數(shù)與銷售價(jià)格(單位:萬(wàn)元/輛)進(jìn)行整理,得到如下數(shù)據(jù):

下面是關(guān)于的折線圖:

(1)由折線圖可以看出,可以用線性回歸模型擬合的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

(2)求關(guān)于的回歸方程并預(yù)測(cè)某輛型號(hào)二手汽車(chē)當(dāng)使用年數(shù)為9年時(shí)售價(jià)大約為多少?(、小數(shù)點(diǎn)后保留兩位有效數(shù)字).

(3)基于成本的考慮,該型號(hào)二手車(chē)的售價(jià)不得低于7118元,請(qǐng)根據(jù)(2)求出的回歸方程預(yù)測(cè)在收購(gòu)該型號(hào)二手車(chē)時(shí)車(chē)輛的使用年數(shù)不得超過(guò)多少年?

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

,. .

參考數(shù)據(jù):

,,,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,直線兩點(diǎn), 的中點(diǎn),過(guò)軸的垂線交點(diǎn).

(1)證明:拋物線點(diǎn)處的切線與平行;

(2)是否存在實(shí)數(shù),使以為直徑的圓經(jīng)過(guò)點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案