【題目】判斷下列函數(shù)的奇偶性:

1;

2

3;

4;

5

6;

7;

8

【答案】1)非奇非偶;(2)既奇又偶;(3)非奇非偶;(4)非奇非偶;(5)偶;(6)奇;(7)奇;(8)偶

【解析】

先求函數(shù)的定義域,若定義域不關(guān)于原點對稱,則該函數(shù)是非奇非偶函數(shù);若定義域關(guān)于原點對稱,且,則該函數(shù)是既奇又偶函數(shù);若定義域關(guān)于原點對稱,再計算,看、是否相等,然后按照奇偶函數(shù)定義判斷;確定函數(shù)的定義域,有時能化簡函數(shù)的解析式,以便簡化解題過程,如(4)和(7)題;分段函數(shù)要分段分別判斷;根據(jù)以上逐一判斷即可.

解:(1,其定義域不關(guān)于原點對稱,所以該函數(shù)是非奇非偶函數(shù);

2)根據(jù),所以關(guān)于原點對稱,又

是既奇又偶函數(shù);

3,其定義域不關(guān)于原點對稱,

所以該函數(shù)是非奇非偶函數(shù);

4的定義域是不關(guān)于原點對稱,

所以該函數(shù)是非奇非偶函數(shù);

5的定義域是關(guān)于原點對稱,

,所以該函數(shù)是偶函數(shù);

6的定義域是關(guān)于原點對稱

,所以該函數(shù)是奇函數(shù);

7定義域關(guān)于原點對稱,此時,

,所以該函數(shù)是奇函數(shù);

8)函數(shù)定義域是關(guān)于原點對稱,

當(dāng),則,

當(dāng),則,

,

所以是偶函數(shù)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為選拔選手參加“中國詩詞大會”,某中學(xué)舉行一次“詩詞大賽”活動.為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計.按照, , , 的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在, 的數(shù)據(jù)).

(1)求樣本容量和頻率分布直方圖中、的值;

(2)在選取的樣本中,從競賽成績在80分以上(含80分)的學(xué)生中隨機抽取2名學(xué)生參加“中國謎語大會”,設(shè)隨機變量表示所抽取的2名學(xué)生中得分在內(nèi)的學(xué)生人數(shù),求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次考試結(jié)束,甲、乙、丙三位同學(xué)聚在一起聊天.甲說:“你們的成績都沒有我高”乙說:“我的成績一定比丙高 ”丙說:“你們的成績都比我高 ”成績公布后,三人成績互不相同且三人中恰有一人說得不對,若將三人成績從高到低排序,則甲排在第______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式;

(3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)已知點A,B的坐標(biāo)分別為(3,0),(-3,0),直線AP,BP相交于點P,且它們的斜率之積是-2,求動點P的軌跡方程.

2)設(shè)Px,y),直線l1x+y=0l2x-y=0.若點Pl1的距離與點Pl2的距離之積為2,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家收購某種農(nóng)產(chǎn)品的價格為120/t,其中征稅標(biāo)準(zhǔn)為每100元征收8元(稱稅率為8個百分點),計劃可收購at,為減輕農(nóng)民負(fù)擔(dān),決定降低稅率x個百分點,預(yù)計收購量可增加2x個百分點.

1)寫出降低稅率后,稅收y(萬元)與x的關(guān)系式;

2)要使此項稅收在稅率調(diào)整后不低于原計劃的78%,試確定x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓錐PO中,AB是圓O的直徑,且AB4,C是底面圓O上一點,且AC2,點D為半徑OB的中點,連接PD.

1)求證:PC在平面APB內(nèi)的射影是PD;

2)若PA4,求底面圓心O到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知從1開始的連續(xù)奇數(shù)蛇形排列形成寶塔形數(shù)表,第一行為1,第二行為3,5,第三行為7,9,11,第四行為13,15,17,19,…,如圖所示,在寶塔形數(shù)表中位于第行、第列的數(shù)記為,比如,,.若,則______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位.已知直線的參數(shù)方程為 (為參數(shù)),曲線的參數(shù)方程為 (為參數(shù)),曲線的極坐標(biāo)方程為.

(1)求曲線的公共點的極坐標(biāo);

(2)若為曲線上的一個動點,求到直線的距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案