(本小題滿分共12分)已知函數(shù),曲線在點處切線方程為。
(Ⅰ)求的值;
(Ⅱ)討論的單調(diào)性,并求的極大值。

(1),,故,解得
(2);令,所以,所以當變化時,變化如下表所示:








+
0
-
0
+

單調(diào)遞增
極大值
單調(diào)遞減
極小值
單調(diào)遞增
所以極大值.

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)上的極值;
(2)證明:當時,
(3)證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)如果對于任意的,總成立,求實數(shù)的取值范圍;
(Ⅲ)設函數(shù),,過點作函數(shù)圖象的所有切線,令各切點得橫坐標構成數(shù)列,求數(shù)列的所有項之和的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的導函數(shù)是二次函數(shù),當時,有極值,且極大值為2,.
(1)求函數(shù)的解析式;
(2)有兩個零點,求實數(shù)的取值范圍;
(3)設函數(shù),若存在實數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

 
(1)如果處取得最小值,求的解析式;
(2)如果,的單調(diào)遞減區(qū)間的長度是正整數(shù),試求的值.(注:區(qū)間的長度為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為正常數(shù).
(Ⅰ)若,且,求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)若,且對任意都有,求的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的定義域為.
(I)求函數(shù)上的最小值;
(Ⅱ)對,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),其中為常數(shù)。
(Ⅰ)當時,判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)有極值點,求的取值范圍及的極值點。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)有極小值
(Ⅰ)求實數(shù)的值;
(Ⅱ)若,且對任意恒成立,求的最大值為.

查看答案和解析>>

同步練習冊答案