設(shè)函數(shù),其中為常數(shù)。
(Ⅰ)當(dāng)時,判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)有極值點(diǎn),求的取值范圍及的極值點(diǎn)。
(Ⅰ)函數(shù)在定義域上單調(diào)遞增;(Ⅱ)當(dāng)且僅當(dāng)時有極值點(diǎn);當(dāng)時,有惟一最小值點(diǎn);當(dāng)時,有一個極大值點(diǎn)和一個極小值點(diǎn).
解析試題分析:(Ⅰ)函數(shù)在定義域上的單調(diào)性的方法,一是利用定義,二是利用導(dǎo)數(shù),此題既有代數(shù)函數(shù)又有對數(shù)函數(shù),顯然利用導(dǎo)數(shù)判斷,只需對求導(dǎo),判斷的符號即可;(Ⅱ)求的極值,只需對求導(dǎo)即可,利用導(dǎo)數(shù)求函數(shù)的極值一般分為四個步驟:①確定函數(shù)的定義域;②求出;③令,列表;④確定函數(shù)的極值.此題由(Ⅰ)得,當(dāng)時,函數(shù)無極值點(diǎn),只需討論的情況,解的根,討論在范圍內(nèi)根的個數(shù),從而確定的取值范圍及的極值點(diǎn),值得注意的是,求出的根時,忽略討論根是否在定義域內(nèi),而出錯.
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題滿分共12分)已知函數(shù),曲線在點(diǎn)處切線方程為。
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)是定義在上的奇函數(shù),當(dāng)時, (其中e是自然界對數(shù)的底,)
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)().
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
試題解析:(Ⅰ)由題意知,的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ca/c/1vows3.png" style="vertical-align:middle;" />, ∴當(dāng)時,,函數(shù)在定義域上單調(diào)遞增.
(Ⅱ)①由(Ⅰ)得,當(dāng)時,函數(shù)無極值點(diǎn),②時,有兩個相同的解,但當(dāng)時,,當(dāng)時,時,函數(shù)在上無極值點(diǎn),③當(dāng)時,有兩個不同解,,時,,而,此時 ,隨在定義域上的變化情況如下表:減
年級
高中課程
年級
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
(Ⅰ)求的值;
(Ⅱ)討論的單調(diào)性,并求的極大值。
(Ⅰ)當(dāng)時,求的極值;
(Ⅱ)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
(Ⅰ)設(shè),求證:當(dāng)時,;
(Ⅱ)是否存在實(shí)數(shù)a,使得當(dāng)時,的最小值是3 ?如果存在,求出實(shí)數(shù)a的值;如果不存在,請說明理由。
(1)當(dāng)時,求曲線在處的切線方程;
(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù),若對于[1,2],[0,1],使成立,求實(shí)數(shù)的取值范圍.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,取得極值.
① 若,求函數(shù)在上的最小值;
② 求證:對任意,都有.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號