【題目】已知圓過, 兩點,且圓心在直線上.
(1)求圓的方程;
(2)若直線過點且被圓截得的線段長為,求的方程.
【答案】(1);(2)或
【解析】試題分析:(1)把點P、Q的坐標和圓心坐標代入圓的一般方程,利用待定系數(shù)法求得系數(shù)的值;(2)分類討論,斜率存在和斜率不存在兩種情況.①當直線l的斜率不存在時,滿足題意,易得直線方程;②當直線l的斜率存在時,設(shè)所求直線l的斜率為k,則直線l的方程為:y-5=kx,由點到直線的距離公式求得k的值.
試題解析:
(1)設(shè)圓的方程為,圓心 ,根據(jù)題意有,計算得出,
故所求圓的方程為.
(2)如圖所示, ,設(shè)是線段的中點,
則,
∴, .
在中,可得.
當直線的斜率不存在時,滿足題意,
此時方程為.
當直線的斜率存在時,設(shè)所求直線的斜率為,則直線的方程為: ,
即,由點到直線的距離公式:
,得,此時直線的方程為.
∴所求直線的方程為或
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點,F在棱AC上,且AF=3FC
(1)求三棱錐D-ABC的體積
(2)求證:平面DAC⊥平面DEF;
(3)若M為DB中點,N在棱AC上,且CN=CA,求證:MN∥平面DEF
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了準確地把握市場,做好產(chǎn)品生產(chǎn)計劃,對過去四年的數(shù)據(jù)進行整理得到了第年與年銷量(單位:萬件)之間的關(guān)系如下表:
(1)在圖中畫出表中數(shù)據(jù)的散點圖;
(2)根據(jù)散點圖選擇合適的回歸模型擬合與的關(guān)系(不必說明理由);
(3)建立關(guān)于的回歸方程,預測第5年的銷售量.
附注:參考公式:回歸直線的斜率和截距的最小二乘法估計公式分別為:
, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()
(1)討論的單調(diào)性;
(2)設(shè),若有兩個極值點,且不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()
(1)討論的單調(diào)性;
(2)設(shè),若有兩個極值點,且不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中,底面為正三角形, 底面,且, 是的中點.
(1)求證: 平面;
(2)求證:平面平面;
(3)在側(cè)棱上是否存在一點,使得三棱錐的體積是?若存在,求出的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一條生產(chǎn)線上按同樣的方式每隔30分鐘取一件產(chǎn)品,共取了n件,測得其產(chǎn)品尺寸后,畫得其頻率分布直方圖如圖所示,已知尺寸在[15,45)內(nèi)的頻數(shù)為46.
(1)該抽樣方法是什么方法?
(2)求n的值;
(3)求尺寸在[20,25)內(nèi)的產(chǎn)品的件數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com