已知數(shù)列{an}的各項(xiàng)均為正數(shù)的等比數(shù)列,且a1a2=2,a3a4=32,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn=n2,(n∈N*),求數(shù)列{anbn}的前n項(xiàng)和Tn.

(1)(2)

解析試題分析:(1)由已知條件和等比數(shù)列的通項(xiàng)公式列出關(guān)于q和a1的方程組,解出q和a1即可.
(2)根據(jù)bn=Sn-Sn-1,求出數(shù)列{bn}的通項(xiàng)公式bn的表達(dá)式,然后根據(jù)錯(cuò)位相減法求出數(shù)列{anbn}的前n項(xiàng)和Tn.
試題解析:(1)設(shè)等比數(shù)列的公比為,由已知得     2分
又∵,,解得;
(2)由得,
∴當(dāng)時(shí),,當(dāng)時(shí),符合上式,∴,()∴,
,
,      10分
兩式相減得,
.        12分
考點(diǎn):1.等比數(shù)列的通項(xiàng)公式;2.數(shù)列前n項(xiàng)和的求法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,已知,為常數(shù)),,,(1)求數(shù)列的通項(xiàng)公式;(2)求所有滿(mǎn)足等式成立的正整數(shù),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2014·隨州模擬)已知等比數(shù)列{an}滿(mǎn)足an+1+an=9·2n-1,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若不等式Sn>kan-2對(duì)一切n∈N*恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知成等比數(shù)列, 公比為, 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)任意實(shí)數(shù)列,定義它的第項(xiàng)為,假設(shè)是首項(xiàng)是公比為的等比數(shù)列.
(1)求數(shù)列的前項(xiàng)和;
(2)若,,.
①求實(shí)數(shù)列的通項(xiàng);
②證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,且,其中是不為零的常數(shù).
(1)證明:數(shù)列是等比數(shù)列;
(2)當(dāng)時(shí),數(shù)列滿(mǎn)足,,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和,
(1)求通項(xiàng)公式an;(2)令,求數(shù)列{bn}前n項(xiàng)的和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的首項(xiàng)a1=2a+1(a是常數(shù),且a≠-1),
an=2an-1+n2-4n+2(n≥2),數(shù)列{bn}的首項(xiàng)b1=a,
bn=an+n2(n≥2).
(1)證明:{bn}從第2項(xiàng)起是以2為公比的等比數(shù)列;
(2)設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,且{Sn}是等比數(shù)列,求實(shí)數(shù)a的值;
(3)當(dāng)a>0時(shí),求數(shù)列{an}的最小項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為,已知 ,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,數(shù)列的前n項(xiàng)和為,,證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案