【題目】某市為了制定合理的節(jié)水方案,對居民用水情況進行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(I)求直方圖中的a值;
(II)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由。
【答案】(I)a=0.3;(II)3.6萬
【解析】試題分析:(1)有頻率之和等于 ;(2)夏秋頻率
萬.
試題解析:
(I)∵1=(0.08+0.16+a+0.42+0.50+a+0.12+0.08+0.04)×0.5 …………3分
整理可得:2=1.4+2a,
∴解得:a=0.3 ……………5分
(II)估計全市居民中月均用水量不低于3噸的人數(shù)為3.6萬,理由如下:
由已知中的頻率分布直方圖可得月均用水量不低于3噸的頻率為
(0.12+0.08+0.04)×0.5=0.12, ……………8分
又樣本容量為30萬,
則樣本中月均用水量不低于3噸的戶數(shù)為30×0.12=3.6萬. ……………10分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以為頂點的五面體中,O為AB的中點,
平面, ∥, , , .
(1)在圖中過點O作平面,使得∥平面,并說明理由;
(2)求直線DE與平面CBE所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{}的前n項和 (n為正整數(shù))。
(1)令,求證數(shù)列{}是等差數(shù)列,并求數(shù)列{}的通項公式;
(2)令,試比較與的大小,并予以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱柱,側(cè)棱底面, , ,且, , ,側(cè)棱.
(1)若為上一點,試確定點的位置,使平面;
(2)在(1)的條件下,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期為.
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)將函數(shù)的圖象向左平移個單位,再向上平移1個單位,得到函數(shù)的圖象,若在上至少含有10個零點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)在點點處的切線方程;
(2)當時,求函數(shù)的極值點和極值;
(3)當時, 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知|a|=4,|b|=8,a與b的夾角是120°.
(1) 計算:① |a+b|,② |4a-2b|;
(2) 當k為何值時,(a+2b)⊥(ka-b)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項均為正數(shù)的數(shù)列的前n項和為,滿足,且,公比大于1的等比數(shù)列滿足, .
(1)求證數(shù)列是等差數(shù)列,并求其通項公式;
(2)若,求數(shù)列的前n項和;
(3)在(2)的條件下,若對一切正整數(shù)n恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com