【題目】已知直線l:y=﹣x+1與橢圓C: =1(a>b>0))相交于不同的兩點A、B,且線段AB的中點P的坐標為(

(1)求橢圓C離心率;
(2)設O為坐標原點,且2|OP|=|AB|,求橢圓C的方程.

【答案】
(1)解:將直線y=1﹣x代入橢圓方程,可得

(b2+a2)x2﹣2a2x+a2﹣a2b2=0,

則x1+x2=

由AB的中點P的坐標為( , ),可得

= ,即為a2=2b2

可得c2=a2﹣b2= a2,

則橢圓C離心率為e= =


(2)解:由(1)可得,

△=4a4﹣4(b2+a2)(a2﹣a2b2)>0,

可得a2+b2>1,即b2

x1+x2= ,x1x2= =

由2|OP|=|AB|,可得:

2 = ,

解得b2= (滿足△>0),即有a2= ,

可得橢圓方程為 =1


【解析】(1)將直線方程代入橢圓方程,運用韋達定理和中點坐標公式,結合離心率公式計算即可得到所求值;(2)運用韋達定理和弦長公式,以及兩點的距離公式,解方程即可得到a,b,進而得到橢圓方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列中,.若對于任意的,不等式恒成立,則實數(shù)的取值范圍為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點處的切線方程;

(2)設計算的導數(shù).

【答案】(1).(2).

【解析】試題分析:(1)由導數(shù)的基本定義就出斜率,根據(jù)點斜式寫出切線方程;(2) .

試題解析:

(1),則

,∴所求切線方程為,.

(2), .

型】解答
束】
18

【題目】對某校高一年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下

1)求出表中及圖中的值

2)若該校高一學生有800人,試估計該校高一學生參加社區(qū)服務的次數(shù)在區(qū)間內(nèi)的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項均為正數(shù)的數(shù)列{an}的前n項和Sn>1,且6Sn=(an+1)(an+2),n∈N*
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足bn= ,求{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的側面PAD是正三角形,底面ABCD為菱形,A點E為AD的中點,若BE=PE.

(1)求證:PB⊥BC;
(2)若∠PEB=120°,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的一條切線,切點為B,直線ADE、CFD、CGE都是⊙O的割線,已知AC=AB.

(1)若CG=1,CD=4.求 的值.
(2)求證:FG∥AC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設定義在上的函數(shù)對于任意實數(shù),都有成立,且,當時,

1判斷的單調(diào)性,并加以證明;

2試問:當時,是否有值?如果有,求出最值;如果沒有,說明理由;

3解關于的不等式,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知以點A(-1,2)為圓心的圓與直線l1x+2y+7=0相切.過點B(-2,0)的動直線l與圓A相交于M,N兩點,QMN的中點.

(1)求圓A的方程;

(2)當|MN|=2時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(12分)已知函數(shù)f(x)對任意的實數(shù)mn都有:f(mn)=f(m)+f(n)-1,

且當x>0時,有f(x)>1.

(1)求f(0).

(2)求證:f(x)在R上為增函數(shù).

(3)若f(1)=2,且關于x的不等式f(ax-2)+f(xx2)<3對任意的x∈[1,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案