【題目】已知等差數(shù)列{an}滿(mǎn)足a3=7,a5+a7=26,數(shù)列{an}的前n項(xiàng)和Sn .
(1)求an及Sn;
(2)令bn= (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【選做題】在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)?/span>答卷卡指定區(qū)域內(nèi)作答.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4—1:幾何證明選講
如圖,△ABC的頂點(diǎn)A,C在圓O上,B在圓外,線段AB與圓O交于點(diǎn)M.
(1)若BC是圓O的切線,且AB=8,BC=4,求線段AM的長(zhǎng)度;
(2)若線段BC與圓O交于另一點(diǎn)N,且AB=2AC,求證:BN=2MN.
B.選修4—2:矩陣與變換
設(shè)a,b∈R.若直線l:ax+y-7=0在矩陣A= 對(duì)應(yīng)的變換作用下,得到的直線為l′:9x+y-91=0.求實(shí)數(shù)a,b的值.
C.選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,直線l: (t為參數(shù)),與曲線C: (k為參數(shù))交于A,B兩點(diǎn),求線段AB的長(zhǎng).
D.選修4—5:不等式選講
設(shè)a≠b,求證:a4+6a2b2+b4>4ab(a2+b2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知 a>0 且 a≠1,若函數(shù)f(x)=loga(x﹣1),g(x)=loga(5﹣x).
(1)求函數(shù)h(x)=f(x)﹣g(x)的定義域;
(2)討論不等式f(x)≥g(x)成立時(shí)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示不超過(guò)x的最大整數(shù),如[2.2]=2,[﹣3.5]=﹣4,設(shè)數(shù)列{an}的通項(xiàng)公式為an=[log21]+[log22]+[log23]+…[log2(2n﹣1)].
(1)求a1a2a3的值;
(2)是否存在實(shí)數(shù)a,使得an=(n﹣2)2n+a(n∈N*),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】生產(chǎn)甲乙兩種精密電子產(chǎn)品,用以下兩種方案分別生產(chǎn)出甲乙產(chǎn)品共種,現(xiàn)對(duì)這兩種方案生產(chǎn)的產(chǎn)品分別隨機(jī)調(diào)查了各次,得到如下統(tǒng)計(jì)表:
①生產(chǎn)件甲產(chǎn)品和件乙產(chǎn)品
正次品 | 甲正品 甲正品 乙正品 | 甲正品 甲正品 乙次品 | 甲正品 甲次品 乙正品 | 甲正品 甲次品 乙次品 | 甲次品 甲次品 乙正品 | 甲次品 甲次品 乙次品 |
頻 數(shù) |
②生產(chǎn)件甲產(chǎn)品和件乙產(chǎn)品
正次品 | 乙正品 乙正品 甲正品 | 乙正品 乙正品 甲次品 | 乙正品 乙次品 甲正品 | 乙正品 乙次品 甲次品 | 乙次品 乙次品 甲正品 | 乙次品 乙次品 甲次品 |
頻 數(shù) |
已知生產(chǎn)電子產(chǎn)品甲件,若為正品可盈利元,若為次品則虧損元;生產(chǎn)電子產(chǎn)品乙件,若為正品可盈利元,若為次品則虧損元.
(I)按方案①生產(chǎn)件甲產(chǎn)品和件乙產(chǎn)品,求這件產(chǎn)品平均利潤(rùn)的估計(jì)值;
(II)從方案①②中選其一,生產(chǎn)甲乙產(chǎn)品共件,欲使件產(chǎn)品所得總利潤(rùn)大于元的機(jī)會(huì)多,應(yīng)選用哪個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣kx,x∈R(e是自然對(duì)數(shù)的底數(shù)).
(1)若k∈R,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若k>0,討論函數(shù)f(x)在(﹣∞,4]上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2﹣4x+2y+m=0與y軸交于A,B兩點(diǎn),且∠ACB=90°(C為圓心),過(guò)點(diǎn)P(0,2)且斜率為k的直線與圓C相交于M,N兩點(diǎn).
(1)求實(shí)數(shù)m的值;
(2)若|MN|≥4,求k的取值范圍;
(3)若向量 與向量 共線(O為坐標(biāo)原點(diǎn)),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋子中放有大小和形狀相同的四個(gè)小球,它們的標(biāo)號(hào)分別為1、2、3、4,現(xiàn)從袋中不放回地隨機(jī)抽取兩個(gè)小球,記第一次取出的小球的標(biāo)號(hào)為a,第二次取出的小球的標(biāo)號(hào)為b,記事件A為“a+b≥6“.
(1)列舉出所有的基本事件(a,b),并求事件A的概率P(A);
(2)在區(qū)間[0,2]內(nèi)任取兩個(gè)實(shí)數(shù)x,y,求事件“x2+y2≥12P(A)“的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的極坐標(biāo)方程為,在以極點(diǎn)為直角坐標(biāo)原點(diǎn),極軸為軸的正半軸建立的平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).
(1)寫(xiě)出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)在平面直角坐標(biāo)系中,設(shè)曲線經(jīng)過(guò)伸縮變換: 得到曲線,若為曲線上任意一點(diǎn),求點(diǎn)到直線的最小距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com