【題目】直角三角形中,的中點(diǎn),是線段上一個(gè)動(dòng)點(diǎn),且,如圖所示,沿翻折至,使得平面平面

(1)當(dāng)時(shí),證明:平面

(2)是否存在,使得與平面所成的角的正弦值是?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)證明見解析;(2)答案見解析.

【解析】試題分析:

(1)由題意可得,取的中點(diǎn),連接,當(dāng)時(shí),由幾何關(guān)系可證得平面.則.利用線面垂直的判斷定理可得平面.

(2)建立空間直角坐標(biāo)系,結(jié)合直線的方向向量與平面的法向量計(jì)算可得存在,使得與平面所成的角的正弦值為.

試題解析:

(1)在中,,即,

的中點(diǎn),連接,

當(dāng)時(shí),的中點(diǎn),而的中點(diǎn),

的中位線,∴.

中,的中點(diǎn),

的中點(diǎn).

中,,

,則.

又平面平面,平面平面,

平面.

平面,∴.

,∴平面.

(2)以為原點(diǎn),所在直線為軸,所在直線為軸,建立如圖所示空間直角坐標(biāo)系.

,,,

由(1)知中點(diǎn),,而平面平面.

平面,

.

假設(shè)存在滿足題意的,則由.

可得,

.

設(shè)平面的一個(gè)法向量為

,可得,,即.

與平面所成的角的正弦值

.

解得舍去).

綜上,存在,使得與平面所成的角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于給定的正整數(shù),如果各項(xiàng)均為正數(shù)的數(shù)列滿足:對(duì)任意正整數(shù),

總成立,那么稱是“數(shù)列”

1是各項(xiàng)均為正數(shù)的等比數(shù)列,判斷是否為“數(shù)列”,并說(shuō)明理由;

2)若既是“數(shù)列”,又是“數(shù)列”,求證: 是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí), ,則對(duì)任意,函數(shù)的零點(diǎn)個(gè)數(shù)至多有( )

A. 3個(gè) B. 4個(gè) C. 6個(gè) D. 9個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】心理學(xué)家發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué),給所有同學(xué)幾何和代數(shù)各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.統(tǒng)計(jì)情況如下表:(單位:人)

(1)能否據(jù)此判斷有的把握認(rèn)為視覺和空間能力與性別有關(guān)?

(2)經(jīng)過(guò)多次測(cè)試發(fā)現(xiàn):女生甲解答一道幾何題所用的時(shí)間在5—7分鐘,女生乙解答一道幾何題所用的時(shí)間在6—8分鐘,現(xiàn)甲、乙兩人獨(dú)立解答同一道幾何題,求乙比甲先解答完的概率;

(3)現(xiàn)從選擇幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行研究,記甲、乙兩名女生被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.

附表及公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某單位的食堂中,食堂每天以10元/斤的價(jià)格購(gòu)進(jìn)米粉,然后以4.4元/碗的價(jià)格出售,每碗內(nèi)含米粉0.2斤,如果當(dāng)天賣不完,剩下的米粉以2元/斤的價(jià)格賣給養(yǎng)豬場(chǎng).根據(jù)以往統(tǒng)計(jì)資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購(gòu)進(jìn)了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利潤(rùn).

(1)計(jì)算當(dāng)天米粉需求量的平均數(shù),并直接寫出需求量的眾數(shù)和中位數(shù);

(2)估計(jì)該天食堂利潤(rùn)不少于760元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C 的左、右頂點(diǎn)分別為A1、A2,點(diǎn)PC上且直線PA2的斜率的取值范圍是[-2,-1],那么直線PA1斜率的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求的最小值;

)若函數(shù)在區(qū)間(0,1)上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xlnx和g(x)=m(x2-1)(m∈R).

(1)m=1時(shí),求方程f(x)=g(x)的實(shí)根;

(2)若對(duì)任意的x∈(1,+∞),函數(shù)y=g(x)的圖象總在函數(shù)y=f(x)圖象的上方,求m的取值范圍;

(3)求證: +…+>ln(2n+1) (n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

(1)若方程上有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

(2)若上的最小值為,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案