【題目】假設(shè)國家收購某種農(nóng)產(chǎn)品的價(jià)格是1.2元/kg,其中征稅標(biāo)準(zhǔn)為每100元征8元(即稅率為8個百分點(diǎn),8%),計(jì)劃可收購kg.為了減輕農(nóng)民負(fù)擔(dān),決定稅率降低個百分點(diǎn),預(yù)計(jì)收購可增加個百分點(diǎn).
(1)寫出稅收(元)與的函數(shù)關(guān)系;
(2)要使此項(xiàng)稅收在稅率調(diào)節(jié)后不低于原計(jì)劃的78%,確定的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知球是正三棱錐(底面為正三角形,頂點(diǎn)在底面的射影為底面中心)的外接球,,,點(diǎn)在線段上,且,過點(diǎn)作球的截面,則所得截面圓面積的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng),時,求函數(shù)的最大值;
(2)若函數(shù)存在唯一零點(diǎn),且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了獲得更大的收益,每年要投入一定的資金用于廣告促銷,經(jīng)調(diào)查,每年投入廣告費(fèi)t百萬元,可增加銷售額約為百萬元.
(Ⅰ)若該公司將一年的廣告費(fèi)控制在4百萬元之內(nèi),則應(yīng)投入多少廣告費(fèi),才能使該公司由此增加的收益最大?
(Ⅱ)現(xiàn)該公司準(zhǔn)備共投入5百萬元,分別用于廣告促銷和技術(shù)改造,經(jīng)預(yù)測,每投入技術(shù)改造費(fèi)百萬元,可增加的銷售額約為百萬元,請?jiān)O(shè)計(jì)一個資金分配方案,使該公司由此增加的收益最大.
(注:收益=銷售額-投入,這里除了廣告費(fèi)和技術(shù)改造費(fèi),不考慮其他的投入)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:(1)若,,則;(2)若,,,則;(3)若,,則;(4)若,,則,其中正確命題的序號是( )
A.(1)(2)B.(2)(3)
C.(3)(4)D.(1)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓:(),左、右焦點(diǎn)分別是、且,以為圓心,3為半徑的圓與以為圓心,1為半徑的圓相交于橢圓上的點(diǎn)
(1)求橢圓的方程;
(2)設(shè)橢圓:,為橢圓上任意一點(diǎn),過點(diǎn)的直線交橢圓于兩點(diǎn),射線交橢圓于點(diǎn)
①求的值;
②令,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n為正整數(shù),集合A=.對于集合A中的任意元素和,記
M()=.
(Ⅰ)當(dāng)n=3時,若, ,求M()和M()的值;
(Ⅱ)當(dāng)n=4時,設(shè)B是A的子集,且滿足:對于B中的任意元素,當(dāng)相同時,M()是奇數(shù);當(dāng)不同時,M()是偶數(shù).求集合B中元素個數(shù)的最大值;
(Ⅲ)給定不小于2的n,設(shè)B是A的子集,且滿足:對于B中的任意兩個不同的元素,
M()=0.寫出一個集合B,使其元素個數(shù)最多,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知M為圓C:x2+y2-4x-14y+45=0上任意一點(diǎn),且點(diǎn)Q(-2,3).
(1)求|MQ|的最大值和最小值;
(2)若M(m,n),求的最大值和最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com