【題目】已知M為圓Cx2y24x14y450上任意一點,且點Q(-2,3).

1)求|MQ|的最大值和最小值;

2)若Mm,n),求的最大值和最小值

【答案】16,22)最大值為2,最小值為2

【解析】

試題(1)求圓上的點到定點的距離最值,首先求圓心到直線的距離,再此基礎上加減半徑得到距離的最大值和最小值;(2看作兩點連線的斜率,結合圖形可知斜率的最值為直線與圓相切時的切線斜率

試題解析:(1)由Cx2y24x14y450可得(x22+(y728,

圓心C的坐標為(2,7),半徑r2

|QC|4∴|MQ|max426,

|MQ|min422

2)可知表示直線MQ的斜率,設直線MQ的方程為y3kx2),

kxy2k30,則k.由直線MQ與圓C有交點,

所以≤2.可得2≤k≤2

所以的最大值為2,最小值為2

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】假設國家收購某種農產(chǎn)品的價格是1.2/kg,其中征稅標準為每100元征8元(即稅率為8個百分點,8%),計劃可收購kg.為了減輕農民負擔,決定稅率降低個百分點,預計收購可增加個百分點.

1)寫出稅收(元)與的函數(shù)關系;

2)要使此項稅收在稅率調節(jié)后不低于原計劃的78%,確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是定義域R上的奇函數(shù).

(1)設圖像上的兩點,求證:直線AB的斜率>0;

(2)求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設命題:實數(shù)滿足不等式,命題:函數(shù)無極值點.

(1)若為假命題,為真命題,求實數(shù)的取值范圍;

(2)已知為真命題,并記為,且,若的必要不充分條件,求正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,長方體ABCDA1B1C1D1中,ABBC4,BB12,點E、FM分別為C1D1,A1D1,B1C1的中點,過點M的平面α與平面DEF平行,且與長方體的面相交,交線圍成一個幾何圖形.

1)在圖1中,畫出這個幾何圖形,并求這個幾何圖形的面積(不必說明畫法與理由)

2)在圖2中,求證:D1B⊥平面DEF

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓上

)求橢圓的方程

設動直線與橢圓有且僅有一個公共點,判斷是否存在以原點為圓心的圓,滿足此圓與相交于兩點 (兩點均不在坐標軸上),且使得直線、的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在新冠肺炎疫情的影響下,南充高中響應“停課不停教,停課不停學”的號召進行線上教學,高二年級的甲乙兩個班中,需根據(jù)某次數(shù)學測試成績選出某班的5名學生參加數(shù)學競賽決賽,已知這次測試他們取得的成績的莖葉圖如圖所示,其中甲班5名學生成績的平均分是83,乙班5名學生成績的中位數(shù)是86

1)求出xy的值,且分別求甲乙兩個班中5名學生成績的方差,并根據(jù)結

果,你認為應該選派哪一個班的學生參加決賽?

2)從成績在85分及以上的學生中隨機抽取2名.求至少有1名來自甲班的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱中,底面是直角三角形,為側棱的中點.

(1)求異面直線、所成角的余弦值;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】幾位大學生響應國家的創(chuàng)業(yè)號召,開發(fā)了一款應用軟件.為激發(fā)大家學習數(shù)學的興趣,他們推出了解數(shù)學題獲取軟件激活碼的活動.這款軟件的激活碼為下面數(shù)學問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20,接下來的兩項是20,21,再接下來的三項是20,21,22,依此類推.求滿足如下條件的最小整數(shù)NN>100且該數(shù)列的前N項和為2的整數(shù)冪.那么該款軟件的激活碼是

A. 440B. 330

C. 220D. 110

查看答案和解析>>

同步練習冊答案