【題目】試求所有由互異正奇數(shù)構(gòu)成的三元集{a,b,c},使其滿足:.
【答案】7個(gè),,,.
【解析】
據(jù)對(duì)稱性,不妨設(shè)a<b<c,由于奇平方數(shù)的末位數(shù)字只具有1、5、9形式,于是的末位數(shù)字,要么是5、5、9的形式,要么是1、9、9的形式.
又知,如果正整數(shù)n是3的倍數(shù),那么n2必是9的倍數(shù);如果n不是3的倍數(shù),那么n2被3除余1.
由于2019是3的倍數(shù),但不是9的倍數(shù),因此奇數(shù)a、b、c皆不是3的倍數(shù).
注意,即奇數(shù)c≤43,而,
即c2>673,且c不是3的倍數(shù),故奇數(shù)c≥29.
因此奇數(shù).
注意如下事實(shí):如果奇數(shù)為兩個(gè)正整數(shù)的平方和,那么偶數(shù)2N必可表為兩個(gè)互異正奇數(shù)的平方和.
這是由于,
若c=43,方程化為:.
因此,.
于是得兩解:.
若c=41,方程化為.
由此得:{a,b,c}={7,17,41}.
若c=37,方程化為
,
因此,,
得到三個(gè)解:.
若c=35,方程化為:.
而397是一個(gè)4N+1型的質(zhì)數(shù),它可唯一地表為兩整數(shù)的平方和:,
所以,
得到一個(gè)解:{a,b,c}={13,25,35}
若c=31,方程化為:,而23是4N-1型的質(zhì)數(shù),它不能表為兩個(gè)正整數(shù)的平方和.
若c=29,方程化為:,它含有4N-1型的單質(zhì)因子,故不能表為兩整數(shù)的平方和.
綜合以上討論,本題共有七個(gè)滿足條件的互異正奇數(shù)解{a,b,c},即為:
,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;
(2)已知點(diǎn)、的極坐標(biāo)分別為和,直線與曲線相交于,兩點(diǎn),射線與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),、、,且都有,滿足的實(shí)數(shù)有且只有個(gè),給出下述四個(gè)結(jié)論:
①滿足題目條件的實(shí)數(shù)有且只有個(gè);②滿足題目條件的實(shí)數(shù)有且只有個(gè);
③在上單調(diào)遞增;④的取值范圍是.
其中所有正確結(jié)論的編號(hào)是( )
A.①④B.②③C.①②③D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有如下命題:①函數(shù)y=sinx與y=x的圖象恰有三個(gè)交點(diǎn);②函數(shù)y=sinx與y=的圖象恰有一個(gè)交點(diǎn);③函數(shù)y=sinx與y=x2的圖象恰有兩個(gè)交點(diǎn);④函數(shù)y=sinx與y=x3的圖象恰有三個(gè)交點(diǎn),其中真命題的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí),圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色其面積稱為朱實(shí),黃實(shí),利朱用2×勾×股+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn)得勾2+股2=弦2,設(shè)勾股中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲1000顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )
A.886B.500C.300D.134
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“生命重于泰山,疫情就是命令,防控就是責(zé)任”.面對(duì)疫情,為切實(shí)做好防控,落實(shí)“停課不停學(xué)”,某校高三年級(jí)啟動(dòng)線上公益學(xué)習(xí)活動(dòng),助“戰(zhàn)”高考.為了解學(xué)生的學(xué)習(xí)效果,李華老師在任教的甲、乙兩個(gè)班中各隨機(jī)抽取20名學(xué)生進(jìn)行一次檢測(cè),根據(jù)他們?nèi)〉玫某煽?jī)(單位:分,滿分100分)繪制了如下莖葉圖,記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.
(1)分別估計(jì)甲、乙兩個(gè)班“成績(jī)優(yōu)良”的概率;
(2)根據(jù)莖葉圖判斷哪個(gè)班的學(xué)習(xí)效果更好?并從兩個(gè)角度來(lái)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】垃圾分類,是指按一定規(guī)定或標(biāo)準(zhǔn)將垃圾分類儲(chǔ)存、分類投放和分類搬運(yùn),從而轉(zhuǎn)變成公共資源的一系列活動(dòng)的總稱.分類的目的是提高垃圾的資源價(jià)值和經(jīng)濟(jì)價(jià)值,力爭(zhēng)物盡其用.2019年6月25日,生活垃圾分類制度入法.到2020年底,先行先試的46個(gè)重點(diǎn)城市,要基本建成垃圾分類處理系統(tǒng);其他地級(jí)城市實(shí)現(xiàn)公共機(jī)構(gòu)生活垃圾分類全覆蓋.某機(jī)構(gòu)欲組建一個(gè)有關(guān)“垃圾分類”相關(guān)事宜的項(xiàng)目組,對(duì)各個(gè)地區(qū)“垃圾分類”的處理模式進(jìn)行相關(guān)報(bào)道.該機(jī)構(gòu)從600名員工中進(jìn)行篩選,篩選方法:每位員工測(cè)試,,三項(xiàng)工作,3項(xiàng)測(cè)試中至少2項(xiàng)測(cè)試“不合格”的員工,將被認(rèn)定為“暫定”,有且只有一項(xiàng)測(cè)試“不合格”的員工將再測(cè)試,兩項(xiàng),如果這兩項(xiàng)中有1項(xiàng)以上(含1項(xiàng))測(cè)試“不合格”,將也被認(rèn)定為“暫定”,每位員工測(cè)試,,三項(xiàng)工作相互獨(dú)立,每一項(xiàng)測(cè)試“不合格”的概率均為.
(1)記某位員工被認(rèn)定為“暫定”的概率為,求;
(2)每位員工不需要重新測(cè)試的費(fèi)用為90元,需要重新測(cè)試的總費(fèi)用為150元,除測(cè)試費(fèi)用外,其他費(fèi)用總計(jì)為1萬(wàn)元,若該機(jī)構(gòu)的預(yù)算為8萬(wàn)元,且該600名員工全部參與測(cè)試,問(wèn)上述方案是否會(huì)超過(guò)預(yù)算?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com