【題目】對(duì)于函數(shù)有以下說(shuō)法:
①是的極值點(diǎn).
②當(dāng)時(shí), 在上是減函數(shù).
③的圖像與處的切線必相交于另一點(diǎn).
④當(dāng)時(shí), 在上是減函數(shù).
其中說(shuō)法正確的序號(hào)是_______________.
【答案】②③
【解析】由于函數(shù),則
①由于在恒為正或恒為負(fù),故x=0不是f(x)的極值點(diǎn),故①錯(cuò)誤;
②由于a<0時(shí), <0在(∞,+∞)上恒成立,則f(x)在(∞,+∞)上是減函數(shù),故②正確;
③由于,則f′(1)=3a
故f(x)在(1,f(1))處的切線方程:ya=3a(x1),即:y=3ax2a,
聯(lián)立y=a,(a≠0)得到a=3ax2a,整理得=0,即或2, 的圖像與處的切線,故③正確;
④當(dāng)時(shí), 在(∞,+∞)上恒成立, 在上是增函數(shù)函數(shù),故④錯(cuò)誤.
故答案為②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】佳木斯一中從高二年級(jí)甲、乙兩個(gè)班中各選出7名學(xué)生參加2017年全國(guó)高中數(shù)學(xué)聯(lián)賽(黑龍江初賽),他們?nèi)〉玫某煽?jī)(滿分140分)的莖葉圖如圖所示,其中甲班學(xué)生成績(jī)的中位數(shù)是81,乙班學(xué)生成績(jī)的平均數(shù)是86,若正實(shí)數(shù)、滿足, , 成等差數(shù)列且, , 成等比數(shù)列,則的最小值為( )
A. B. 2 C. D. 8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0,且直線l與圓C交于A、B兩點(diǎn).
(1)若|AB|=,求直線l的傾斜角;
(2)若點(diǎn)P(1,1)滿足2=,求此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 x (℃) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù) y(個(gè)) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)請(qǐng)根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程 ;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?
(參考公式: , )
參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面上的三點(diǎn) 、 、 .
(1)求以 、 為焦點(diǎn)且過(guò)點(diǎn) 的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn) 、 、 關(guān)于直線 的對(duì)稱點(diǎn)分別為 、 、 ,求以 、 為焦點(diǎn)且過(guò)點(diǎn) 的雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】先后拋擲兩枚大小相同的骰子.
(1)求點(diǎn)數(shù)之和出現(xiàn)7點(diǎn)的概率;
(2)求出現(xiàn)兩個(gè)6點(diǎn)的概率;
(3)求點(diǎn)數(shù)之和能被3整除的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某保險(xiǎn)公司利用簡(jiǎn)單隨機(jī)抽樣方法,對(duì)投保車輛進(jìn)行抽樣,樣本車輛中每輛車的賠付結(jié)果統(tǒng)計(jì)如下:
賠付金額(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
車輛數(shù)(輛) | 500 | 130 | 100 | 150 | 120 |
(1)若每輛車的投保金額均為2800元,估計(jì)賠付金額大于投保金額的概率.
(2)在樣本車輛中,車主是新司機(jī)的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機(jī)的占20%,估計(jì)在已投保車輛中,新司機(jī)獲賠金額為4000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的圖象與函數(shù)y=x3﹣3x2+2的圖象關(guān)于點(diǎn)( ,0)對(duì)稱,過(guò)點(diǎn)(1,t)僅能作曲線y=f(x)的一條切線,則實(shí)數(shù)t的取值范圍是( )
A.(﹣3,﹣2)
B.[﹣3,﹣2]
C.(﹣∞,﹣3)∪(﹣2,+∞)
D.(﹣∞,﹣3)∪[﹣2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本(單位:萬(wàn)元)與產(chǎn)品銷售收入(單位:萬(wàn)元)存在較好的線性關(guān)系,下表記錄了最近5次產(chǎn)品的相關(guān)數(shù)據(jù).
(投入成本) | 7 | 10 | 11 | 15 | 17 |
(銷售收入) | 19 | 22 | 25 | 30 | 34 |
(1)求關(guān)于的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本20萬(wàn)元的毛利率更大還是投入成本24萬(wàn)元的毛利率更大()?
相關(guān)公式: , .
【答案】(1).(2)投入成本20萬(wàn)元的毛利率更大.
【解析】試題分析:(1)由回歸公式,解得線性回歸方程為;(2)當(dāng)時(shí), ,對(duì)應(yīng)的毛利率為,當(dāng)時(shí), ,對(duì)應(yīng)的毛利率為,故投入成本20萬(wàn)元的毛利率更大。
試題解析:
(1), ,
, ,故關(guān)于的線性回歸方程為.
(2)當(dāng)時(shí), ,對(duì)應(yīng)的毛利率為,
當(dāng)時(shí), ,對(duì)應(yīng)的毛利率為,
故投入成本20萬(wàn)元的毛利率更大.
【題型】解答題
【結(jié)束】
21
【題目】已知橢圓的一個(gè)焦點(diǎn)為.設(shè)橢圓的焦點(diǎn)恰為橢圓短軸的頂點(diǎn),且橢圓過(guò)點(diǎn).
(1)求的方程及離心率;
(2)若直線與橢圓交于兩點(diǎn),求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com