【題目】設(shè)橢圓 ,離心率,短軸,拋物線頂點(diǎn)在原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,焦點(diǎn)為,
(1)求橢圓和拋物線的方程;
(2)設(shè)坐標(biāo)原點(diǎn)為,為拋物線上第一象限內(nèi)的點(diǎn),為橢圓是一點(diǎn),且有,當(dāng)線段的中點(diǎn)在軸上時(shí),求直線的方程.
【答案】(1),(2)
【解析】
(1)根據(jù)和,代入,求出,即可求出橢圓方程;再根據(jù)已知條件得拋物線焦點(diǎn)在的參數(shù)軸,且,從而求出拋物線方程;
(2)根據(jù)題意,設(shè)直線和的方程,與曲線聯(lián)立求出點(diǎn)和點(diǎn)的坐標(biāo),根據(jù)線段的中點(diǎn)在軸上,即可求出直線的方程.
(1) 由得,又有,代入,解得
所以橢圓方程為
由拋物線的焦點(diǎn)為得,拋物線焦點(diǎn)在的參數(shù)軸,且,
拋物線的方程為:
(2)由題意點(diǎn)位于第一象限,可知直線的斜率一定存在且大于
設(shè)直線方程為:,
聯(lián)立方程得:,可知點(diǎn)的橫坐標(biāo),即
因?yàn)?/span>,可設(shè)直線方程為:
連立方程得:,從而得
若線段的中點(diǎn)在軸上,可知,即
有,且,解得
從而得,
直線的方程:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l1:kx-y+4=0與直線l2:x+ky-3=0相交于點(diǎn)P,則當(dāng)實(shí)數(shù)k變化時(shí),點(diǎn)P到直線4x-3y+10=0的距離的最大值為( 。
A.2B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù),,恒有. 數(shù)列滿足,且N*.
(1)求的解析式;
(2)證明:數(shù)列單調(diào)遞增;
(3)記. 若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知數(shù)列中,,前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,是否存在實(shí)數(shù),使得對(duì)一切正整數(shù)都成立?若存在,求出的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中盈不足章中有這樣一則故事:“今有良馬與駑馬發(fā)長(zhǎng)安,至齊. 齊去長(zhǎng)安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.” 為了計(jì)算每天良馬和駑馬所走的路程之和,設(shè)計(jì)框圖如下圖. 若輸出的 的值為 350,則判斷框中可填( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),下列結(jié)論中不正確的是( )
A. 的圖象關(guān)于點(diǎn)中心對(duì)稱
B. 的圖象關(guān)于直線對(duì)稱
C. 的最大值為
D. 既是奇函數(shù),又是周期函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1;B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)和投資單位:萬(wàn)元).
(1)分別將A、B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到18萬(wàn)元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn).
①若平均投入生產(chǎn)兩種產(chǎn)品,可獲得多少利潤(rùn)?
②問(wèn):如果你是廠長(zhǎng),怎樣分配這18萬(wàn)元投資,才能使該企業(yè)獲得最大利潤(rùn)?其最大利潤(rùn)約為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為全面貫徹黨的教育方針,堅(jiān)持立德樹(shù)人,適應(yīng)經(jīng)濟(jì)社會(huì)發(fā)展對(duì)多樣化高素質(zhì)人才的需要,按照國(guó)家統(tǒng)一部署,湖南省高考改革方案從2018年秋季進(jìn)入高一年級(jí)的學(xué)生開(kāi)始正式實(shí)施.新高考改革中,明確高考考試科目由語(yǔ)文、數(shù)學(xué)、英語(yǔ)科,及考生在思想政治、歷史、地理、物理、化學(xué)、生物個(gè)科目中自主選擇的科組成,不分文理科.假設(shè)個(gè)自主選擇的科目中每科被選擇的可能性相等,每位學(xué)生選擇每個(gè)科目互不影響,甲、乙、丙為某中學(xué)高一年級(jí)的名學(xué)生.
(1)求這名學(xué)生都選擇了物理的概率.
(2)設(shè)為這名學(xué)生中選擇物理的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,近日我漁船編隊(duì)在島周圍海域作業(yè),在島的南偏西20°方向有一個(gè)海面觀測(cè)站,某時(shí)刻觀測(cè)站發(fā)現(xiàn)有不明船只向我漁船編隊(duì)靠近,現(xiàn)測(cè)得與相距31海里的處有一艘海警船巡航,上級(jí)指示海警船沿北偏西40°方向,以40海里/小時(shí)的速度向島直線航行以保護(hù)我漁船編隊(duì),30分鐘后到達(dá)處,此時(shí)觀測(cè)站測(cè)得間的距離為21海里.
(Ⅰ)求的值;
(Ⅱ)試問(wèn)海警船再向前航行多少分鐘方可到島?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com