【題目】已知函數(shù),若存在,使得成立,則的最小值為(

A.B.C.D.

【答案】D

【解析】

利用導(dǎo)數(shù)分析函數(shù)fx)的單調(diào)性,并可知在x∈(0,1)時(shí),fx)<0,再轉(zhuǎn)化函數(shù),即將已知條件等價(jià)轉(zhuǎn)化為,即可表示,從而整理出,最后構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最小值即可.

函數(shù)fx)的定義域?yàn)椋?/span>0,+∞),,

∴當(dāng)x∈(0e)時(shí),fx)>0,fx)單調(diào)遞增,當(dāng)x∈(e,+∞)時(shí),fx)<0fx)單調(diào)遞減,又f1)=0,所以x∈(01)時(shí),fx)<0

同時(shí),若存在,使得成立,

,所以,即x2lnx1,又所以,

,令,k0,則

,解得,令,解得,

在(﹣,﹣3)單調(diào)遞減,在(﹣30)單調(diào)遞增,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎(jiǎng),在評獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:

甲說:作品獲得一等獎(jiǎng)”; 乙說:作品獲得一等獎(jiǎng)”;

丙說:兩件作品未獲得一等獎(jiǎng)”; 丁說:作品獲得一等獎(jiǎng)”.

評獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎(jiǎng)的作品是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班主任對全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,喜歡玩電腦游戲的同學(xué)認(rèn)為作業(yè)多的有18人,認(rèn)為作業(yè)不多的有9人,不喜歡玩電腦游戲的同學(xué)認(rèn)為作業(yè)多的有8人,認(rèn)為作業(yè)不多的有15人,則認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)量的多少有關(guān)系的把握大約是多少?

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為子調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各50名,將男性、女性使用微信的時(shí)間分成5組:,,,,分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(1)根據(jù)女性頻率分布直方圖估計(jì)女性使用微信的平均時(shí)間;

(2)若每天再微信超過4個(gè)小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,請你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“微信控”與“性別有關(guān)”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),討論函數(shù)圖象的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,分別為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,的周長為6.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點(diǎn)的直線與橢圓交于,兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn),是否存在常數(shù)使得恒成立?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列,滿足下列條件:①,;②當(dāng)時(shí),滿足:時(shí),,時(shí),,.

1)若,,求的值,并猜想數(shù)列可能的通項(xiàng)公式(不需證明);

2)若,是滿足的最大整數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位為促進(jìn)職工業(yè)務(wù)技能提升,對該單位120名職工進(jìn)行一次業(yè)務(wù)技能測試,測試項(xiàng)目共5項(xiàng).現(xiàn)從中隨機(jī)抽取了10名職工的測試結(jié)果,將它們編號后得到它們的統(tǒng)計(jì)結(jié)果如下表(表1)所示(“√”表示測試合格,“×”表示測試不合格).

表1:

編號\測試項(xiàng)目

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

規(guī)定:每項(xiàng)測試合格得5分,不合格得0分.

(1)以抽取的這10名職工合格項(xiàng)的項(xiàng)數(shù)的頻率代替每名職工合格項(xiàng)的項(xiàng)數(shù)的概率.

①設(shè)抽取的這10名職工中,每名職工測試合格的項(xiàng)數(shù)為,根據(jù)上面的測試結(jié)果統(tǒng)計(jì)表,列出的分布列,并估計(jì)這120名職工的平均得分;

②假設(shè)各名職工的各項(xiàng)測試結(jié)果相互獨(dú)立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;

(2)已知在測試中,測試難度的計(jì)算公式為,其中為第項(xiàng)測試難度,為第項(xiàng)合格的人數(shù),為參加測試的總?cè)藬?shù).已知抽取的這10名職工每項(xiàng)測試合格人數(shù)及相應(yīng)的實(shí)測難度如下表(表2):

表2:

測試項(xiàng)目

1

2

3

4

5

實(shí)測合格人數(shù)

8

8

7

7

2

定義統(tǒng)計(jì)量,其中為第項(xiàng)的實(shí)測難度,為第項(xiàng)的預(yù)測難度().規(guī)定:若,則稱該次測試的難度預(yù)測合理,否則為不合理,測試前,預(yù)估了每個(gè)預(yù)測項(xiàng)目的難度,如下表(表3)所示:

表3:

測試項(xiàng)目

1

2

3

4

5

預(yù)測前預(yù)估難度

0.9

0.8

0.7

0.6

0.4

判斷本次測試的難度預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠今年1月、2月、3月生產(chǎn)某產(chǎn)品分別為1萬件、1.2萬件、1.3萬件,為了估計(jì)以后每月的產(chǎn)量,以這三個(gè)月的產(chǎn)量為依據(jù),用一個(gè)函數(shù)模擬該產(chǎn)品的月產(chǎn)量,與月份的關(guān)系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)、為常數(shù))已知四月份該產(chǎn)品的產(chǎn)量為1.37萬件,請問用以上哪個(gè)函數(shù)作模擬函數(shù)較好?說明理由.

查看答案和解析>>

同步練習(xí)冊答案