【題目】如圖,四棱錐中,平面,,,的中點(diǎn).

(Ⅰ)證明:平面平面;

(Ⅱ)求異面直線(xiàn)所成角的余弦值;

(Ⅲ)求直線(xiàn)與平面所成角的正弦值.

【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ);() .

【解析】

(Ⅰ)由線(xiàn)面平行的性質(zhì)可得,由勾股定理可得,從而可得平面,進(jìn)而可得結(jié)果;(Ⅱ)取的中點(diǎn)為,連接,可證明為平行四邊形,,所成的角,利用余弦定理可得結(jié)果;() ,由面面垂直的性質(zhì)可得平面,連接,則就是直線(xiàn)與平面所成角,求出的值,進(jìn)而可得結(jié)果.

(Ⅰ)平面平面
,

,
,
平面

平面,

平面平面;

(Ⅱ)

的中點(diǎn)為,連接,

,

為平行四邊形,,

所成的角,,

,

又直角三角形中,

所以,

即異面直線(xiàn)所成角的余弦值為;

()

為垂足.
()知平面平面,
平面平面
平面,連接,則
就是直線(xiàn)與平面所成角,

,,

即直線(xiàn)與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為奇函數(shù), 為偶函數(shù),

(1)求的解析式及定義域;

(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍

(3)如果函數(shù),若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率為,過(guò)的直線(xiàn)與橢圓交于兩點(diǎn),且的周長(zhǎng)為

1)求橢圓的方程;

2)若直線(xiàn)與橢圓分別交于兩點(diǎn),且,試問(wèn)點(diǎn)到直線(xiàn)的距離是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用五種不同顏色給三棱臺(tái)的六個(gè)頂點(diǎn)染色,要求每個(gè)點(diǎn)染一種顏色,且每條棱的兩個(gè)端點(diǎn)染不同顏色.則不同的染色方法有___________種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題pk2﹣8k﹣20≤0,命題q:方程1表示焦點(diǎn)在x軸上的雙曲線(xiàn).

(1)命題q為真命題,求實(shí)數(shù)k的取值范圍;

(2)若命題“pq”為真,命題“pq”為假,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1) 如果,求函數(shù)的值域;

(2) 求函數(shù)的最大值;

(3) 如果對(duì)不等式中的任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,其中常數(shù).

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)若函數(shù)有兩個(gè)零點(diǎn),求證: ;

(3)求證: .

選做題:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某老小區(qū)建成時(shí)間較早,沒(méi)有集中供暖,隨著人們生活水平的日益提高熱力公司決定在此小區(qū)加裝暖氣該小區(qū)的物業(yè)公司統(tǒng)計(jì)了近五年(截止2018年年底)小區(qū)居民有意向加裝暖氣的戶(hù)數(shù),得到如下數(shù)據(jù)

年份編號(hào)x

1

2

3

4

5

年份

2014

2015

2016

2017

2018

加裝戶(hù)數(shù)y

34

95

124

181

216

)若有意向加裝暖氣的戶(hù)數(shù)y與年份編號(hào)x滿(mǎn)足線(xiàn)性相關(guān)關(guān)系求yx的線(xiàn)性回歸方程并預(yù)測(cè)截至2019年年底,該小區(qū)有多少戶(hù)居民有意向加裝暖氣;

2018年年底鄭州市民生工程決定對(duì)老舊小區(qū)加裝暖氣進(jìn)行補(bǔ)貼,該小區(qū)分到120個(gè)名額物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競(jìng)拍的方式分配名額,競(jìng)拍方案如下:①截至2018年年底已登記在冊(cè)的居民擁有競(jìng)拍資格;②每戶(hù)至多申請(qǐng)一個(gè)名額,由戶(hù)主在競(jìng)拍網(wǎng)站上提出申請(qǐng)并給出每平方米的心理期望報(bào)價(jià);③根據(jù)物價(jià)部門(mén)的規(guī)定,每平方米的初裝價(jià)格不得超過(guò)300元;④申請(qǐng)階段截止后,將所有申請(qǐng)居民的報(bào)價(jià)自高到低排列,排在前120位的業(yè)主以其報(bào)價(jià)成交;⑤若最后出現(xiàn)并列的報(bào)價(jià),則認(rèn)為申請(qǐng)時(shí)問(wèn)在前的居民得到名額,為預(yù)測(cè)本次競(jìng)拍的成交最低價(jià),物業(yè)公司隨機(jī)抽取了有競(jìng)拍資格的50位居民進(jìn)行調(diào)查統(tǒng)計(jì)了他們的擬報(bào)競(jìng)價(jià),得到如圖所示的頻率分布直方圖:

1)求所抽取的居民中擬報(bào)競(jìng)價(jià)不低于成本價(jià)180元的人數(shù);

2)如果所有符合條件的居民均參與競(jìng)拍,請(qǐng)你利用樣本估計(jì)總體的思想預(yù)測(cè)至少需要報(bào)價(jià)多少元才能獲得名額(結(jié)果取整數(shù))

參考公式對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),xn,yn),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的離心率為,以橢圓四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積為.

1)求橢圓E的方程;

2)過(guò)橢圓E的右焦點(diǎn)作直線(xiàn)E交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求面積的最大值,并求此時(shí)直線(xiàn)的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案