【題目】精準扶貧是鞏固溫飽成果、加快脫貧致富、實現(xiàn)中華民族偉大“中國夢”的重要保障.某地政府在對某鄉(xiāng)鎮(zhèn)企業(yè)實施精準扶貧的工作中,準備投入資金將當?shù)剞r(nóng)產(chǎn)品進行二次加工后進行推廣促銷,預計該批產(chǎn)品銷售量萬件(生產(chǎn)量與銷售量相等)與推廣促銷費萬元之間的函數(shù)關系為(其中推廣促銷費不能超過5千元).已知加工此農(nóng)產(chǎn)品還要投入成本萬元(不包括推廣促銷費用),若加工后的每件成品的銷售價格定為元/件.

(1)試將該批產(chǎn)品的利潤萬元表示為推廣促銷費萬元的函數(shù);(利潤=銷售額-成本-推廣促銷費)

(2)當推廣促銷費投入多少萬元時,此批產(chǎn)品的利潤最大?最大利潤為多少?

【答案】(1) ;(2) 當推廣促銷費投入3萬元時,利潤最大,最大利潤為27萬元.

【解析】試題分析:根據(jù)題意即可求得,化簡即可;

利用基本不等式可以求出該函數(shù)的最值,注意等號成立的條件,即可得到答案;

解析:(1)由題意知

.

(2)∵

.

當且僅當時,上式取“

∴當時, .

答:當推廣促銷費投入3萬元時,利潤最大,最大利潤為27萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標原點,為拋物線上一點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱的所有棱長都是 平面, 分別是, 的中點.

)求證: 平面

)求二面角的余弦值.

)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦點坐標為,且短軸一頂點滿足

1求橢圓的方程;

2的直線與橢圓交于不同的兩點,的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】運貨卡車以每小時千米的速度勻速行駛130千米 (單位:千米/小時).假設汽油的價格是每升6元,而汽車每小時耗油升,司機的工資是每小時30元.

1)求這次行車總費用關于的表達式;

2)當為何值時,這次行車的總費用最低,并求出最低費用的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四面體ABCD的頂點C在平面α內(nèi),且直線BC與平面α所成角為15°,頂點B在平面α上的射影為點O,當頂點A與點O的距離最大時,直線CD與平面α所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x2﹣ax+a+3,g(x)=ax﹣2a.
(1)若函數(shù)h(x)=f(x)﹣g(x)在[﹣2,0]上有兩個零點,求實數(shù)a的取值范圍;
(2)若存在x0∈R,使得f(x0)≤0與g(x0)≤0同時成立,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】點A、B、C是拋物線y2=4x上不同的三點,若點F(1,0)滿足 ,則△ABF面積的最大值為(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列所給4個圖象中,與所給3件事吻合最好的順序為 ( )

(1)我離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學;

(2)我出發(fā)后,心情輕松,緩緩行進,后來為了趕時間開始加速;

(3)我騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時間.

A. (1)(2)(4) B. (4)(2)(1) C. (4)(3)(1) D. (4)(1)(2)

查看答案和解析>>

同步練習冊答案