【題目】如圖,三棱柱的所有棱長(zhǎng)都是, 平面, , 分別是, 的中點(diǎn).

)求證: 平面

)求二面角的余弦值.

)求點(diǎn)到平面的距離.

【答案】(1)見(jiàn)解析;(2);(3)1

【解析】試題分析:1根據(jù)三角形相似得,根據(jù)直棱柱性質(zhì)得,又由等邊三角形性質(zhì)得,所以由線(xiàn)面垂直判定定理得平面,,最后根據(jù)線(xiàn)面垂直判定定理得結(jié)論2建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用方程組解出各面法向量,再根據(jù)向量數(shù)量積求夾角,最后根據(jù)二面角與向量夾角關(guān)系求二面角的余弦值.3根據(jù)向量投影得點(diǎn)到平面的距離為,再利用向量數(shù)量積求夾角可得結(jié)果

試題解析:)證明:∵平面, 平面,,

是等邊三角形,∴,又

平面

為原點(diǎn)建立空間直角坐標(biāo)系如圖所示:

, , ,

,

, ,, ,

,平面

,

設(shè)平面的法向量為,則,

,又為平面的法向量,

∴二面角的余弦值為

,

∴直線(xiàn)與平面所成角的正弦值為,∴點(diǎn)到平面的距離為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線(xiàn),設(shè)圓的半徑為1, 圓心在.

1)若圓心也在直線(xiàn)上,過(guò)點(diǎn)作圓的切線(xiàn),求切線(xiàn)方程;

2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀如圖所示的程序框圖,當(dāng)輸出的結(jié)果S為0時(shí),判斷框中應(yīng)填(
A.n≤4
B.n≤5
C.n≤7
D.n≤8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前項(xiàng)和為Sn , 若點(diǎn)An(n, )在函數(shù)f(x)=﹣x+c的圖像上運(yùn)動(dòng),其中c是與x無(wú)關(guān)的常數(shù)且a1=3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=tanan+1tanan , tan195+tan3=atan2,求數(shù)列{bn}的前99項(xiàng)和(用含a的式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù).

(1)判斷并證明上的單調(diào)性.

(2)若對(duì)任意實(shí)數(shù)t,不等式恒成立,求實(shí)數(shù)k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方體的棱長(zhǎng)為1,線(xiàn)段上有兩個(gè)動(dòng)點(diǎn),則下列結(jié)論中正確結(jié)論的序號(hào)是__________

;

②直線(xiàn)與平面所成角的正弦值為定值

③當(dāng)為定值,則三棱錐的體積為定值;

④異面直線(xiàn)所成的角的余弦值為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐的底面為直角梯形, , ,且 .

(1)求證:平面平面;

(2)設(shè),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】精準(zhǔn)扶貧是鞏固溫飽成果、加快脫貧致富、實(shí)現(xiàn)中華民族偉大“中國(guó)夢(mèng)”的重要保障.某地政府在對(duì)某鄉(xiāng)鎮(zhèn)企業(yè)實(shí)施精準(zhǔn)扶貧的工作中,準(zhǔn)備投入資金將當(dāng)?shù)剞r(nóng)產(chǎn)品進(jìn)行二次加工后進(jìn)行推廣促銷(xiāo),預(yù)計(jì)該批產(chǎn)品銷(xiāo)售量萬(wàn)件(生產(chǎn)量與銷(xiāo)售量相等)與推廣促銷(xiāo)費(fèi)萬(wàn)元之間的函數(shù)關(guān)系為(其中推廣促銷(xiāo)費(fèi)不能超過(guò)5千元).已知加工此農(nóng)產(chǎn)品還要投入成本萬(wàn)元(不包括推廣促銷(xiāo)費(fèi)用),若加工后的每件成品的銷(xiāo)售價(jià)格定為元/件.

(1)試將該批產(chǎn)品的利潤(rùn)萬(wàn)元表示為推廣促銷(xiāo)費(fèi)萬(wàn)元的函數(shù);(利潤(rùn)=銷(xiāo)售額-成本-推廣促銷(xiāo)費(fèi))

(2)當(dāng)推廣促銷(xiāo)費(fèi)投入多少萬(wàn)元時(shí),此批產(chǎn)品的利潤(rùn)最大?最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD的底面ABCD為菱形,且∠ABC=60°,
AB=PC=2,PA=PB=

(1)求證:平面PAB⊥平面ABCD;
(2)設(shè)H是PB上的動(dòng)點(diǎn),求CH與平面PAB所成最大角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案