【題目】已知數(shù)列中,,,,且對時,有.
(Ⅰ)設(shè)數(shù)列滿足,,證明數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)記,求數(shù)列的前項和.
【答案】(Ⅰ)證明見解析;;(Ⅱ)
【解析】
(Ⅰ)利用已知等式表示出和,整理可知,從而可證得數(shù)列為等比數(shù)列,根據(jù)等比數(shù)列通項公式求得;利用配湊的方式可證得數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式,整理可得;(Ⅱ)將代入,整理可得:,利用累乘的方式可求得,進而可得;采用分組求和的方式,分別對用錯位相減的方法求和,對采用裂項相消的方法求和,分別求和后加和即可得到結(jié)果.
(Ⅰ)由題意知:
又
數(shù)列是以為首項,為公比的等比數(shù)列
,即
數(shù)列是以為首項,為公差的等差數(shù)列
(Ⅱ)由(Ⅰ)知:,即:
則:,,……,
左右兩側(cè)分別相乘可得:
令
則
則
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,沿河有A、B兩城鎮(zhèn),它們相距千米.以前,兩城鎮(zhèn)的污水直接排入河里,現(xiàn)為保護環(huán)境,污水需經(jīng)處理才能排放.兩城鎮(zhèn)可以單獨建污水處理廠,或者聯(lián)合建污水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送).依據(jù)經(jīng)驗公式,建廠的費用為(萬元),表示污水流量;鋪設(shè)管道的費用(包括管道費)(萬元),表示輸送污水管道的長度(千米).已知城鎮(zhèn)A和城鎮(zhèn)B的污水流量分別為、,、兩城鎮(zhèn)連接污水處理廠的管道總長為千米.假定:經(jīng)管道輸送的污水流量不發(fā)生改變,污水經(jīng)處理后直接排入河中.請解答下列問題(結(jié)果精確到):
(1)若在城鎮(zhèn)A和城鎮(zhèn)B單獨建廠,共需多少總費用?
(2)考慮聯(lián)合建廠可能節(jié)約總投資,設(shè)城鎮(zhèn)A到擬建廠的距離為千米,求聯(lián)合建廠的總費用與的函數(shù)關(guān)系式,并求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐D-ABC中,,E,F分別為DB,AB的中點,且.
(1)求證:平面平面ABC;
(2)求點D到平面CEF的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其導(dǎo)函數(shù)設(shè)為.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)有兩個極值點,,試用表示;
(Ⅲ)在(Ⅱ)的條件下,若的極值點恰為的零點,試求,這兩個函數(shù)的所有極值之和的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓心在曲線上,與直線x+y+1=0相切,且面積最小的圓的方程為( )
A. x2+(y-1)2=2B. x2+(y+1)2=2C. (x-1)2+y2=2D. (x+1)2+y2=2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個月A,B兩種移動支付方式的使用情況,從全校學(xué)生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
交付金額(元) 支付方式 | (0,1000] | (1000,2000] | 大于2000 |
僅使用A | 18人 | 9人 | 3人 |
僅使用B | 10人 | 14人 | 1人 |
(Ⅰ)從全校學(xué)生中隨機抽取1人,估計該學(xué)生上個月A,B兩種支付方式都使用的概率;
(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機抽取1人,以X表示這2人中上個月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)已知上個月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,有一個長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖②),且傾斜時底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內(nèi)的溶液不會溢出,角的最大值是多少?
(2)現(xiàn)需要倒出不少于的溶液,當時,能實現(xiàn)要求嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com